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Circulation Regimes: An Introduction
• Hypothesis that the large scale intra-seasonal and seasonal variability

of the extra-tropical atmosphere can be described by preferred
circulation, patterns, called “regimes”
– Amplitude and phase of planetary waves are dynamically equilibrated

with variations in heating, and with feedbacks from synoptic-scale eddies

• Preferred patterns identified as “clumping” of low-frequency states in
an appropriate state space- try to identify subtle maxima in the pdf

• Early work on QG – channel models (Reinhold and Pierrehumbert 1982;
Vautard and Legras, 1988)

• Global QG models – (Marshall and Molteni, 1993; D’Andrea and Vautard
2001)

• PE GCMs – (Haines and Hannachi 1995; Monahan et al 2000)
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Circulation Regimes in Observations

• Rigorous Identification of large-scale hemispheric or regional
circulation regimes in observations is a very difficult statistical
problem (Straus, Corti and Molteni, 2007; Stephenson et al 2004;
Molteni et al. 2005)

• There are simply not enough circulation data !

• We may have to give up on the notion of rigorously defined,
unique regimes, and settle for approximations.
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Relationship to Forcing

• By analogy with low-order chaotic systems, it has been argued that moderate
changes in forcing (boundary conditions) would not lead to changes in
circulation regimes, but only in their frequency of occurrence (Palmer, 1993,
1999; Molteni et al. 1993)

• Observed inter-decadal variability in NH regime frequency may be one aspect
of atmospheric response to increased greenhouse forcing (Corti et al, 1999,
Shindel et al., 1999, Hsu and Zwiers, 2001)

• However, recent studies have shown that large variations in the forcing
(diabatic heating due to major changes in tropical Pacific SST) lead to more
substantial changes in regime properties- (both patterns and number of
regimes) (Molteni and Corti 1998; Straus and Molteni, 2004)
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The Need for GCMs
• The (possible) change in extra-tropical regime properties with tropical SST

seriously compounds the already difficult problem of rigorous identification of
regimes in observations.

• We only have very few (observed) realizations of winter seasons for a given
tropical Pacific SST configuration.

• We really do need very large ensembles of realistic global GCMs to estimate
the sampling properties of circulation regimes –  that is, to estimate the effects
of internal vs. external variability on regime properties.

• But very little work has been done on this!



Is frequency of occurrence of regimes related to SST?

Case Study of 18-year period: 1982 - 1998 (winter only)

Red line:
GCM

Blue line:
NCEP

Gray: intra-
ensemble σ
in GCM

GCM 55 winter seasonal simulations
with obs SST for each winter

Is the frequency of occurrence of Alaskan Ridge and Pacific Trough even partly
predictable on the basis of SST?  - Look at frequency of occurrence year by
year for the recent 18-winter period - results are encouraging!

ENSO-type Pacific Ridge



Palmer’s hypothesis and inter-annual variability

Relationship to Boundary Forcing - Tropical SST

Examine “super-ensembles” of
seasonal AGCM simulations made
with observed SST for each of 18
recent winters. (Ensemble size = 55).

Cluster analysis on each winter (55
realizations) separately --> set of 18
independent analyses.

Results show significant clustering for
each winter except the warm ENSO
winters (El-Ninos): 1982/83, 1986/87
and 1997/98.

Straus and Molteni, 2004: Circulation Regimes and SST Forcing: Results
from Large GCM Ensembles. J. Climate, 17, 1641-1656.



Tropical SST Forcing influences degree to which preferred states are seen

Is ENSO the whole story?

A more systematic approach

- Identify the very slowly varying (inter-annual and decadal) component of
the atmospheric circulation itself - the component due to slowly varying
SST forcing and very slow internal dynamical modes.

- Explore the dependence of regimes on this slowly varying state

- To accomplish this, we must separate out the interannual variability that
is due to the residual of the regimes (intra-seasonal variabiliy) themselves

- A systematic method has been proposed by Zheng and Frederiksen
(2004)



Zheng and Frederiksen method applied to C20C

-COLA AGCM (T63) 10 runs from Nov 1949 - Nov 1998

- Use 49 x 10 winters (“DJF”) monthly and seasonal means

- Compute the covariance matrix due to slowly varying (forced +
slow internal) atmospheric “potentially predictable” states

- Compute EOFs and PCs.

- From the leading PCs, identify two classes of winters that have
very different configurations of the “potentially predictable” slow
states.

Are the regimes in intra-seasonal flow more readily seen in one class
than another?



Predictable Component Leading EOFs from COLA C20C

Seasonal Mean 200 hPa height - DJF average



Relationship of PC-1 to SST:  La-Nina in the Pacific + mid-latitude anomalies

DJF SST mean difference between winters: (PC-1 > 1 std) - (PC-1 < -1 std)

Units: Degrees C



Cluster Analysis of Winter States

Data Sets
- Reanalysis
- C20C GCM: ensemble of continuous runs forced by obs SST

(ensemble size = 10) for 49 years
- DSP GCM: ensemble of seasonal runs with obs ICs and obs SST

(ensemble size = 55 or 10) for 18 winters

Fields and Processing
- Z 200 daily
- Remove only “grand mean” annual cycle”
- Low-Pass filter (retain periods of only 10 days of longer)
- Retain only leading N = 4-6 EOFs (~ 2/3 variance retained)
- Keep only quasi-stationary states (not too rapid movement

in state space of PCs)



Partitioning Method (k-means algorithm)
- Applied to the set of points in the N-dimensional PC space
- Fix number of clusters (regimes) sought (k)
- Find the division of state space into k partitions that 

maximizes the variance ratio =
variance between cluster centers /

intra-cluster variance
- Test the “significance” of the partition vis-à-vis a multi-
normal (multi-variate Gaussian) null hypothesis by Monte 
Carlo testing. (True data must have higher variance ratio than
~90% of multi-normal samples).
- Test the reproducibility of the results on a large number of
randomly-chosen half-length data sets*
- Can take into account skewness of PCs in Monte-Carlo tests

* (Due to SST-dependence, each half-length data set should be compared on another
half-length data set ONLY in the same year)



NCEP 18 winters

1981/82 -1998/99

200 hPa Z   CI:20 m  blue (negative) red (positive)

0.79

0.84

0.82

DSP: 55
ensemble
members

Alaskan Ridge

Arctic Low

Pacific Trough

Arctic High
Ridge
(PNA)?



NCEP 54 winters

1948/49 -2001/02

 200 hPa Z   CI:20 m  blue (negative) red
(positive)

Alaskan Ridge

Pacific Trough

Arctic High

Arctic Low

Ridge
(PNA)?

Pacific
Ridge

C20C

10 members

49 winters
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Diffusiveness of flow in a very coarse-grained view of state space from an
Atmospheric General Circulation Model

Coarse-Grained Markov Chain approach
(Crommelin, 2004, Journal of the Atmospheric Sciences)

Start with Markov chain description:

pi(t + ∆t) = ∑j Mij pj(t)

(In principle exact if probability p includes all variables and is a point pdf)
Here p is the probability that the system is in coarse-grained partition i of
the state space.

M is a matrix which describes the probability of transitions

Major assumption that transition probability does not depend on past
history.
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Basic Ideas:

Non-Diffusive Flow:
Regular cycles through parts of phase space are considered to
be “conservative” or “non-diffusive”, and are associated with
no information loss (entropy production)

(Interesting limit:  Very fine discretization of state space - these
cycles converge to unstable periodic orbits)

Diffusive Flow:
If occupation in partition i of state space is followed by
occupation of all partitions at the next time step with equal
probability - the system is “diffusive” and the flow has large
information loss (entropy production)

Measure of Information Loss µ
µ ranges from 1(totally diffusive) to 0 (totally conservative)



Significance of Transitions

The significance of individual transitions (individual matrix elements of M)
can be assessed in a straightforward manner IF the coarse-grained
partitions of the finite data set are arranged to have an equal number of
states (equipartition).

How to Divide State Space into a Few (equally populated) regions in a
Dynamically Meaningful Way ?

Start with cluster analysis of C20C winter time states
NO Quasi-stationary filtering applied!



Geopotential states corresponding to centers of 4 partitions
(clusters based on geopotential states)

Related to seasonal
mean response to

El-Nino events
Increased incidence of 

Alaskan Blocking

Related to seasonal mean
response to

La-Nina events
Model version of  “PNA’

Contour Interval  = 20 m

Arctic Low? / La-Nina ?



Geopotential states corresponding to centers of 4 partitions 
(clusters based on precipitation states) 

Contour Interval  = 20 m



Equipartition Not Achieved: Adjustment of states necessary!

Adjustment: Take states from “overpopulated” clusters and assign
them “underpopulated” clusters based on minimum distance in state

space to cluster center.

(Results sensitive to this ad hoc adjustment ???)

geopotential
clusters

precipitation
clusters

PT 32% 28%

AR 16% 18%

AL 25% 29%

R 27% 25%

Percent occurrence
of different clusters



Inter-Cluster Transitions
are Highly Diffusive (µ = 0.9887)

Yet some transitions are still significantly different from random:

From PT From AR From AL From R

To PT x S

To AR x S

To AL S x

To R s s x

Transitions for
one “time step”

=  4 days

x: self-transitions always most
likely (τ̃8-10 days)



PT PR

AL R



Limitations of this analysis:

Do pairs of individual transitions occur in sequence often
enough

for a statistically significant cycle to be identified?
(future work)

Transitions identified not sensitive to ad hoc population
adjustment:

An episode analysis based solely on the cluster partitions
themselves identifies the same transitions as being most likely -

even after episodes of longer than 4 days.



Stability properties of states conditioned on cluster of initial state

Approach:
The venerable identical twin experiments!

Model:  Same AGCM as used in C20C experiments

160 Control Integrations:
10 winter simulations: Late November - end of March for each of 16 winters

1981/82 - 1996/97
Initial conditions: Reanalysis states for 10 days in late Nov. of each year
Boundary conditions: SST sea-ice for each winter specified from observations

160 Perturbation Integrations:
Identical to Control Integrations, but with all variables initially perturbed by
~0.1 %

Error is defined as difference between Perturbation and Control

(Acknowledgment to Dan Paolino, COLA)



Control+Perturbation Run Clusters 
Geopotential states corresponding to centers of 4 partitions 

(clusters based on geopotential states) 

Contour Interval  = 20 m

Arctic Low / La-Nina



Initial states far from cluster center
Initial states close to cluster center

Error growth of states initially in a cluster:

(1) Project instantaneous daily states of
control and perturbation runs on low-

frequency  PCs

(2) Determine cluster whose center is nearest
in PC-space

(3) Follow subsequent error

Initial states far from cluster center
Initial states close to cluster center

Error growth of states initially in a cluster:

(1) Project instantaneous daily states of
control and perturbation runs on low-

frequency  PCs

(2) Determine cluster whose center is
nearest in PC-space

(3) Follow subsequent error



Geopotential states corresponding to centers of 5 partitions 
(clusters based on geopotential states) 

Contour Interval  = 20 m

Arctic Low

Minus Pacific Trough PT(-)



PT(-) (minus Pacific Trough)

PT 

ARError growth of states initially in a cluster:

(1) Project instantaneous daily states of control
and perturbation runs on low-frequency  PCs

(2) Determine cluster whose center is nearest in
PC-space

(3) Follow subsequent error



Initial states far from cluster center
Initial states close to cluster center



Some comments about error growth results:

(1) Relatively slower error growth of PT and PT(-) states nearer the
cluster center indicates these preferred states are relatively stable

(2) Error growth asymmetry between PT and PT(-) has strong
predictability implications for medium range forecasts

(3) Alaskan Ridge has relatively large error growth compared to other
clusters - and the states that are closest to the cluster center are the
most unstable! (Is there a link to under-prediction of blocking in this
AGCM and others?)

(4) The big difference in stability properties of the Pacific Ridge (stable)
and Alaskan Ridge (unstable) remains to be explained.

(5) More diagnosis and numerical experiments are needed


