Understanding Recent Tropical Expansion and its Impacts

Chris Lucas
Hanh Nguyen

www.cawcr.gov.au
Papers

Introduction

• What is tropical expansion?
• Why do we care?
 • Subtropical drought

• The mean meridional circulation (MMC)
• How fast are tropics expanding?
 • Consistency of metrics and observations
 • How much to trust reanalysis?
 • Pre-satellite era measures of TE
 • Regional and hemispheric characteristics
• Forcing factors of SH expansion
 • What is behind it all.
Idealized Model of MMC

Inspired by isentropic view of MMC; Interpreted through ‘classical’ meteorological concepts

Shares some characteristics with classic three-cell model, but visualizes circulation as a whole-hemisphere enterprise

Extratropics not an ‘afterthought’ of MMC

Tropical-extratropical interactions vital. Subtropics are the nexus of this interaction
Observational studies of tropical expansion

Methodology or Data Source

- General consensus on tropical expansion since 1979
- Wide range of estimates
 - More scatter in satellite, less in jet mass streamfunction (Ψ)
 - Different hemispheric asymmetry
 - Is expansion equal, or does one hemisphere expand more than the other? Which one expands more?
 - Consequence of different physics or other data issues?
- Can we reduce the uncertainty?

Summary

- General consensus on tropical expansion since 1979
- Wide range of estimates
 - More scatter in satellite, less in jet mass streamfunction (Ψ)
 - Different hemispheric asymmetry
 - Is expansion equal, or does one hemisphere expand more than the other? Which one expands more?
 - Consequence of different physics or other data issues?
- Can we reduce the uncertainty?

Trends units are degrees latitude per decade
OLR estimates

Time-latitude plot of annual zonal-mean OLR

- 250 W m\(^{-2}\) used to define edge
- Get trend from temporal variation of edge
- Expansion trends: 0.82 in NH, -0.32 in SH

Data are composite of many satellites

- Satellites ‘drift’, changing time the scene is viewed
- Equatorial crossing time (ECT) bias, especially over land areas

ECT-bias needs to be removed

Zero trend in uncorrected version!! More consistent with expectations
Isobaric Mass Streamfunction (Ψ)

Vertical integral of mean meridional wind
- Computed in eight reanalyses
- Three cell model of MMC
- Edge is poleward boundary of the Hadley cell
- See Nguyen et al [2012] in J Climate

Temporal variation of edge gives trend
- More consistent in SH
- SH expansion: 0.1 to 0.8 deg/decade
- NH expansion: 0.2 to 0.9 deg/decade
- Greater expansion during warm seasons

What is going on in SH during late-1990s? Is it real?
Possible breakpoints in Hadley Cell

Apply homogeneity tests to time series
Two-phase regression
Use test statistic of Lund and Reeves [2002]
Broad region of significant scores
Possible breakpoint where score is a maximum

Two times of concern
7 of 8 RAs suggest breakpoint in early 1998 (March or June)
6 of 8 RAs in Sept 1990 (CFSR slightly different)

The 20CR shows no possible breakpoints during this period
Newer RAs like CFSR, ERA-I minimize or don’t contain the 1990 breakpoint
What is role of changes to global observing system?
GPCP Minimum Precipitation

GPCP global satellite-gauge precipitation dataset

Identify subtropical minimum precipitation

Two studies show different results with different versions of dataset (v 2.1 and 2.2)

Results here generally consistent with previous results with v2.2

SH expansion: 0.38 deg/decade

NH expansion: 0.15 deg/decade
The Edge of the Tropics

Charleville, QLD (26.5°S)

Cobar, NSW (31.5°S)

each dot is one observation of the tropopause, bin size = 1 km, centred
Annual frequency of subtropical tropopause height is bimodal

- Tropical - peak at 15-16 km
- Extratropical - peak at 12-13 km

Estimate edge from number of tropical tropopause days (TTD)

- focus on TTD=200 contour
- computed from 1979-2011 using IGRA radiosondes and 4 reanalyses

Trends (SH only)

- sondes: 0.4 deg dec$^{-1}$ (expansion)
- NCEP, NCEP2: 0.3 - 0.5 deg dec$^{-1}$
- ERA-I: no trend

Two periods of notable difference

- post-2002 -- better satellite observations improving ERA-I, creates inhomogeneity
- pre-1985 - ??

See Lucas et al [2012] in JGR
Comparison of Edge Metrics

A reasonably good comparison!
Captures interannual variability (e.g. 1989, late-1990s, 2010)
Trends roughly same magnitude across all metrics...tropical expansion of 0.3 to 0.5 degrees/decade in SH
Not as good at some times
No other metric sees the pre-1985 sonde TTD position
Differences in HC measures in 1990s
Noisier GPCP precipitation edge after 2000

Compare relative position and variability of edges as defined from sonde TTD, HC metrics for 20 CR and ERA-I and GPCP min precip

<table>
<thead>
<tr>
<th>Source</th>
<th>Trend/2-σ CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonde TTD</td>
<td>-0.48/0.23</td>
</tr>
<tr>
<td>20CR HC</td>
<td>-0.47/0.27</td>
</tr>
<tr>
<td>ERA-I HC</td>
<td>-0.39/0.28</td>
</tr>
<tr>
<td>GPCP</td>
<td>-0.32/0.31</td>
</tr>
</tbody>
</table>
What happened with expansion prior to 1979?

Use 20CR to extend record of expansion
Use the Ψ methodology
Period of record: 1900-2008
Trend: 0.07 ± 0.03 deg decade$^{-1}$
contraction!!

Can we believe these data?

Analysis suggests highly significant breakpoint in July 1951
Lower variance, different behaviour before BP
BP doesn’t prove anything by itself

Expansion trend from 1952-2008: -0.26 ± 0.07 deg decade$^{-1}$
Variation of 20CR trends with time

Plot shows variation of 30-year trends with time

- Observed T
- 20CR T
- Observed STR position
- STR position
- HC edge

30-year trend start time
CMIP 5 modelling

Comparison of 20CR and CMIP5 multi-model ensemble

Simulations do not capture acceleration of trend in HC position

Simulations also do not capture acceleration of trend in STR position
NH Expansion from Radiosondes

<table>
<thead>
<tr>
<th>Region</th>
<th>Bands</th>
<th>Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANZ</td>
<td>10</td>
<td>45</td>
</tr>
<tr>
<td>AFR</td>
<td>8</td>
<td>26</td>
</tr>
<tr>
<td>SA</td>
<td>9</td>
<td>36</td>
</tr>
<tr>
<td>ASIA</td>
<td>21</td>
<td>252</td>
</tr>
<tr>
<td>EUR</td>
<td>19</td>
<td>178</td>
</tr>
<tr>
<td>NA</td>
<td>20</td>
<td>136</td>
</tr>
</tbody>
</table>
Structure of ‘subtropics’ different in the regions of the NH
- Less poleward extent in EUR
- 300,200 contours shifted poleward in ASIA
- Thickest in NA

Significantly different variability in NA
- ‘Dips’ on 300 contour
- Responses around 2000
- Volcanic response?

Trends (since 1979)
- Largest in ASIA (0.5 - 0.8)
- Insignificant in NA (0-0.3)
- Moderate in EUR (0.4-0.5)
Subtropics in NH are larger compared to SH

- Start in same place, but extend further poleward
- Likely related to greater land area in NH
- Analogous to finding with other variables (e.g. Ψ)

Is tropical expansion asymmetric?

- Trends in SH on 300, 100, 50 less reliable (data issues)
- SH trends are larger on 200, 100 contours, but not statistically significantly so (about 1-σ difference)
NH ‘global’ summary

Weighted average TTD=200 contour across all regions

- Removing mean position accounts for shift
- Volcanic response more visible in this view

Generally good agreement prior to 2002

1987-88?

Significant differences occur after 2002, just as for SH

- Suggests inhomogeneity in reanalysis fields
- Hypothesis: related to significant improvement in satellite instrumentation (AIRS)

BUT…
There appears to be little sign of this poleward of 35 N…data match up very well there
Forcings of tropical expansion

1. Carbon Dioxide + other GHG

2. Stratospheric Ozone Depletion

3. Aerosol – Direct and Indirect Effects

4. Natural Variability – e.g. volcanic eruptions, ENSO
Approximately 30% of trend is due to natural factors (10% MEI, 20% volcanoes). This is simply a matter of the timing over which the trend is computed.

The remaining 70% of the trend is due to anthropogenic forcing. The correlation between these two variables is problematic in the analysis, yielding different results. Assign a range based on the two regressions: 10-40% of total trend is due to global temperature (i.e. GHG increase), the remainder (60%-30%) is due to ozone depletion. The first number of the range is the value with SH temperature.
Modelling – CCSM4 Single Forcing Runs

- Trends of individual forcings add up to that in the ALL experiments
- From 1960, O3 and GHG are the dominant forcings. NAT and AER result in small trends
- No relationship is observed with a model-derived Southern Oscillation Index (SOI)

- From 1979, NAT plays accounts for ~40% of expansion, followed by O3 at nearly the same magnitude. The magnitude of the GHG trend is about half of the above, while AER shows a distinct contraction of the tropical edge

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>-0.25 ± 0.14</td>
<td>-0.28 ± 0.40</td>
</tr>
<tr>
<td>NAT</td>
<td>-0.03 ± 0.12</td>
<td>-0.16 ± 0.31</td>
</tr>
<tr>
<td>O3</td>
<td>-0.12 ± 0.05</td>
<td>-0.15 ± 0.12</td>
</tr>
<tr>
<td>GHG</td>
<td>-0.10 ± 0.04</td>
<td>-0.08 ± 0.11</td>
</tr>
<tr>
<td>AER</td>
<td>+0.02 ± 0.05</td>
<td>+0.09 ± 0.11</td>
</tr>
</tbody>
</table>
• The rate of tropical expansion is towards the low end of the range of measurements…on the order of 0.5 degrees/decade since 1979
 • This rate may be overestimated due to natural variability at start of period
 • Amplification of expansion rate in late 1960s
 • Regional and hemispheric differences in expansion observed

• Reanalyses have homogeneity issues
 • Trends may not be trustworthy
The Centre for Australian Weather and Climate Research
A partnership between CSIRO and the Bureau of Meteorology

Chris Lucas

Phone: (03) 9669 4783
Email: c.lucas@bom.gov.au
Web: www.cawcr.gov.au

Thank you

www.cawcr.gov.au