Feedback parameter λ

- References:

- Principle:
 - The influence of a slowly-varying variable X at time t on a faster atmospheric variable Y at future time $t+dt$ can be estimated with a feedback parameter:
 $$\lambda = \frac{\text{cov}[X(t-\tau),Y(t)]}{\text{cov}[X(t-\tau),X(t)]}$$
 where τ is a time scale > dt. The denominator is proportional to the lagged autocorrelation of X, or its memory.

- Data needs:
 - Time series of the two variables - well suited to large model output data sets. The larger the sample, the more robust and stable the results.

- Observational data sources:
 - Well suited to observational time series, but sensitive to sample size (see below).

- Caveats:
 - With finite data sets there will be sensitivity to the choice of τ.
 - As with all correlation-based metrics, causal relationships are not guaranteed. This is not a process-level metric.
 - Likewise, the metric isolates only linear relationships. Nonlinear or categorical (threshold) relationships may not be well captured.