Subseasonal Prediction Skill from SubX

Timothy DelSole

George Mason University, Fairfax, Va and Center for Ocean-Land-Atmosphere Studies

September 12, 2017

collaborators: Abhishekh Srivastava, Laurie Trenary, Michael Tippett, Kathy Pegion, Dan Collins, Emerson LaJoie

Predictability of Week 3-4 Averages

Evidence of Sub-Seasonal Predictability

Pegion, Sardeshmukh (2011; MWR): ψ and OLR (CFS, GEOS5, LIM)Johnson et al. (2013; Wea. For.):N. America T. (empirical)Wang et al. (2014; Climate Dyn.):MJO (CFSv2)Vitard (2014; QJRMS):MJO and NAO (ECMWF)Li and Roberts (2015; MWR):Summer P. (CFSv2, JMA, ECMWF)

Predictability of Week 3-4 Averages

Evidence of Sub-Seasonal Predictability

Pegion, Sardeshmukh (2011; MWR): ψ and OLR (CFS, GEOS5, LIM)Johnson et al. (2013; Wea. For.):N. America T. (empirical)Wang et al. (2014; Climate Dyn.):MJO (CFSv2)Vitard (2014; QJRMS):MJO and NAO (ECMWF)Li and Roberts (2015; MWR):Summer P. (CFSv2, JMA, ECMWF)

No clear demonstration of skill by dynamical models for predicting week 3-4 averages of T. or P. over North America.

Data Details

- ► CFSv2 hindcasts initialized 0Z, 6Z, 12Z, 18Z each day 1999-2010.
- Consider only 14-day mean of weeks 3-4 (15-28d) hindcasts.
- Temperature validated with NCEP/NCAR reanalysis.
- Precipitation validated with CPC Unified Gauge-Based Analysis.
- Subtract out smoothed climatology conditioned on verification day.

Permutation Test

- Standard significance test is not appropriate because hindcasts initialized 6 hours apart are not independent.
- Under null hypothesis of no predictability, hindcasts are exchangeable for the same start day and lead.

Predictable Component Analysis

Determine linear combination of variables that maximizes S/N.

signal = variance of ensemble means noise = variance *about* the ensemble means

Most Predictable Component

Week 3-4 Prediction

courtesy of Kathy Pegion

Model	Lead (d)	Ε	Time Steps	Initial Conds
			6976	only 4 IC dates every year:
ECCC – GEM	32	4	10Aug1995-14Sep2014	10Aug, 17Aug, 24Aug, 31Aug, 7Sep
				every 7th day starting from
			914	02June and ending at
EMC – GEFS	35	11	02June1999-30Nov2016	30Nov of each year
				every 7th day starting from
			835	06Jan1999 and ending at
ESRL – FIMr1p1	32	4	06Jan1999-31Dec2014	31Dec2014
				every 5th day starting from
			5990	05July and ending at
GMAO – GEOS _V 2p1	45	4	05Jul1999-27Nov 2015	27Nov of each year
				each set of 4 consecutive ICs
			5995	starting from 03Jul1999
NRL – NESM	45	1	03Jul1999-30Nov2015	separated by 3 days
				every 7th day starting from
			6569	07Jan and ending at
RSMAS – CCSM4	45	3	07Jan1999-31Dec2016	29Apr of each year

ESRL Start Dates (Ensemble Size = 4) every 7th day starting 6Jan1999

2-3 samples per day

17 samples 1 day/week, 0 samples on other days of the week

16 samples 1 day/week, 0 samples on other days of the week

Local Linear Regression

Hastie, Tibshirani, Friedman, 2009, Elements of Statistical Learning

Monte Carlo Experiment

 $1. \ \mbox{Synthetically generate data from the model}$

$$Obs(t) = \sum_{k=1}^{2} \left(a_k \cos\left(\frac{2\pi tk}{365}\right) + b_k \left(\frac{2\pi tk}{365}\right) \right) + noise$$

- 2. Subsample in a way similar to SubX (e.g., every 7 days for 16 years)
- 3. Test different methods for estimating climatology:

sample mean: average of each calendar day
harmonic: estimate parameters in (1) using least squares.
local (28) local linear regression with 28-day window

19/33

20 / 33

Measure of Lead-Time Dependence of Climatology

$$N/T = \frac{\text{standard deviation about each calendar-day mean}}{\text{standard deviation over all calendar days}}$$

22 60 50 40 30 20 200 220 240 260 280 300 0.02 0.03 0.04 0.05 0.06 0.01 0.07

Lead-time Dependence of ESRL Climatology Leads= 15-28 days; E=4

ESRL re-forecasts of precipitation lon=290; lat=70; lead=28; E=4

Lead-time Dependence of ESRL Climatology precipitation; Leads= 15-28 days; E=4

32 / 33

Summary

Predictability of Week 3-4 CFSv2 Forecasts over CONUS

- CFSv2 skillfully predicts week 3-4 temperature and precipitation.
- Significance of the skill determined by rigorous permutation test.
- Skill detected also using Predictable Component Analysis.
- Most predictable patterns are related to ENSO.
- Some predictability of winter precipitation related to MJO.

SubX over CONUS

- Data inhomogeneities complicate estimation of model climatology.
- ► Local linear regression (LOESS) appears very promising.
- Including lead-time dependence in climatology will be critical.
- ▶ ESRL has statistically significant skill for week 3-4 temperature.
- Subtracting climatology may not be best way to remove model precipitation biases.