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Predictability of Week 3-4 Averages

Evidence of Sub-Seasonal Predictability

Pegion, Sardeshmukh (2011; MWR): ψ and OLR (CFS, GEOS5, LIM)

Johnson et al. (2013; Wea. For.): N. America T. (empirical)

Wang et al. (2014; Climate Dyn.): MJO (CFSv2)

Vitard (2014; QJRMS): MJO and NAO (ECMWF)

Li and Roberts (2015; MWR): Summer P. (CFSv2, JMA, ECMWF)

No clear demonstration of skill by dynamical models for predicting
week 3-4 averages of T. or P. over North America.
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Correlation Skill of CFSv2 Hindcasts

Week 3−4 Prediction; Lagged Ensemble= 4 days

Jan Temp (59%) Jan Precip (41%)

Jul Temp (36%) Jul Precip (9%)

−0.65 −0.5 −0.35 −0.2 0.2 0.35 0.5 0.65
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Data Details

weeks 3-4

4-Member Lagged Ensemble

I CFSv2 hindcasts initialized 0Z, 6Z, 12Z, 18Z each day 1999-2010.

I Consider only 14-day mean of weeks 3-4 (15-28d) hindcasts.

I Temperature validated with NCEP/NCAR reanalysis.

I Precipitation validated with CPC Unified Gauge-Based Analysis.

I Subtract out smoothed climatology conditioned on verification day.
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Permutation Test

weeks 3-4

4-Member Lagged Ensemble
random year 1

random year 2

random year 3

random year 4

I Standard significance test is not appropriate because hindcasts
initialized 6 hours apart are not independent.

I Under null hypothesis of no predictability, hindcasts are
exchangeable for the same start day and lead.
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Predictable Component Analysis

Determine linear combination of variables that maximizes S/N.

signal = variance of ensemble means
noise = variance about the ensemble means
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Most Predictable Component

Week 3−4 Prediction

Jan Temp (x2) Jan Precip (x1.3)

Jul Temp (x0.7) Jul Precip (x0.8)

−1 −0.75 −0.5 −0.25 0.25 0.5 0.75 1
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SubX	BY	THE	NUMBERS	

7	Global	Models	

17	Years	of	
Retrospec)ve	Forecasts	

1	Year	of	Real-)me	
Forecasts	

3-4	week	guidance	
for	Climate	PredicHon	

Center	Outlooks	

courtesy of Kathy Pegion
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Model Lead (d) E Time Steps Initial Conds

ECCC − GEM 32 4
6976

10Aug1995-14Sep2014
only 4 IC dates every year:

10Aug, 17Aug, 24Aug, 31Aug, 7Sep

EMC − GEFS 35 11
914

02June1999-30Nov2016

every 7th day starting from
02June and ending at

30Nov of each year

ESRL− FIMr1p1 32 4
835

06Jan1999-31Dec2014

every 7th day starting from
06Jan1999 and ending at

31Dec2014

GMAO − GEOSV 2p1 45 4
5990

05Jul1999-27Nov 2015

every 5th day starting from
05July and ending at
27Nov of each year

NRL− NESM 45 1
5995

03Jul1999-30Nov2015

each set of 4 consecutive ICs
starting from 03Jul1999

separated by 3 days

RSMAS − CCSM4 45 3
6569

07Jan1999-31Dec2016

every 7th day starting from
07Jan and ending at
29Apr of each year
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Jan Mar May Jul Sep Nov Jan

start date

2000

2005

2010

2015

ESRL Start Dates (Ensemble Size = 4)
every 7th day starting 6Jan1999

2-3 samples per day
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Jan Mar May Jul Sep Nov Jan

start date

2000

2005

2010

2015

GMAO Start Dates (Ensemble Size = 4)
every 5th day starting 5July/ending 27Nov of each year

17 samples 1 day/week, 0 samples on other days of the week
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Jan Mar May Jul Sep Nov Jan

start date

2000

2005

2010

2015

ECCC Start Dates (Ensemble Size = 4)
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Local Linear Regression

Hastie, Tibshirani, Friedman, 2009, Elements of Statistical Learning
15 / 33



Monte Carlo Experiment

1. Synthetically generate data from the model

Obs(t) =
2∑

k=1

(
ak cos

(
2πtk

365

)
+ bk

(
2πtk

365

))
+ noise

2. Subsample in a way similar to SubX (e.g., every 7 days for 16 years)

3. Test different methods for estimating climatology:

sample mean: average of each calendar day
harmonic: estimate parameters in (1) using least squares.
local (28) local linear regression with 28-day window
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lon=290; lat=70; lead=28; E=4
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Measure of Lead-Time Dependence of Climatology

N/T =
standard deviation about each calendar-day mean

standard deviation over all calendar days
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Summary
Predictability of Week 3-4 CFSv2 Forecasts over CONUS

I CFSv2 skillfully predicts week 3-4 temperature and precipitation.

I Significance of the skill determined by rigorous permutation test.

I Skill detected also using Predictable Component Analysis.

I Most predictable patterns are related to ENSO.

I Some predictability of winter precipitation related to MJO.

SubX over CONUS

I Data inhomogeneities complicate estimation of model climatology.

I Local linear regression (LOESS) appears very promising.

I Including lead-time dependence in climatology will be critical.

I ESRL has statistically significant skill for week 3-4 temperature.

I Subtracting climatology may not be best way to remove model
precipitation biases.
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