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Anomaly Correlations (ACs) Heatmaps

Because the historical forecast archive of the NMME now contains data from more than
five years ago, there is potential for new insight, and on the way, various upgrades as well.
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ACs Averaged Over Time Bar Plots

e Here, the ACs are averaged over time to gain a quick summary of skill for each model

 These plots convey that, overall, NMME holds consistent, high skill from the fact that the NMME’'s mean and

median (50%-tile) is often within the top three highest ranking models

e These plots also show that the NMME has the lowest average and median AC (29 and 35) during the fall

(SON) and highest average and median AC (49 and 52) during the summer (JJA).
e During JJA though, the standard deviation (std) is relatively small compared to other seasons

150

100

50

—-50

—100

Anomaly Correlation * 100

150

100

50

—-50

—100

Anomaly Correlation * 100

150

100

50

—-50

Anomaly Correlation * 100

—100

150

100

50

—-50

—100

Anomaly Correlation * 100

150

100

50

—-50

—100

Anomaly Correlation * 100

AC US Whole ALL Temp2m - Lead=01

Bl NCAR CCSM4 Bl NASA GEOSS5 Bl CAN CM4 B Crsv2
Bl GFDL _FLOR Bl CAN_CM3 Bl GFDL CM2.1 NMME .

mean std min 25% 50% 75% max

AC US Whole DJF Temp2m - Lead=01

Bl NCAR CCSM4 Bl NASA GEOSS5 Bl CAN CM4 B Crsv2
Bl GFDL _FLOR Bl CAN_CM3 Bl GFDL CM2.1 NMME

—
o [Ta]

=]
~

26

mean std min 25% 50% 75% max

AC US Whole MAM Temp2m - Lead=01

Bl NCAR CCSM4 Bl NASA GEOSS5 Bl CAN CM4 B Crsv2
Bl GFDL _FLOR Bl CAN_CM3 Bl GFDL CM2.1 NMME

an
M = e ot
- | < o ] ol o o | I t |
= M T e T e - < =
[a] o ia) (xa]
= |~ M =t m -
M= ™ [l
< ™ = = —~
== = —
< ™~ 0
o ~in

o
Tal

mean std min 25% 50% 75% max

AC US Whole JJA Temp2m - Lead=01

Bl NCAR CCSM4 Bl NASA GEOSS5 Bl CAN CM4 B Crsv2
Bl GFDL _FLOR Bl CAN_CM3 Bl GFDL CM2.1 NMME

o+
=1

a o]
O‘-g m o
@ [5s]

=t
I~

~
=

mean std min 25% 50% 75% max

AC US Whole SON Temp2m - Lead=01

Bl NCAR CCSM4 Bl NASA GEOSS5 Bl CAN CM4 B Crsv2
Bl GFDL _FLOR Bl CAN_CM3 Bl GFDL CM2.1 NMME

mean std min 25% 50% 75% max

AC US West ALL Temp2m - Lead=01

AC US East ALL Temp2m - Lead=01

AC US Whole ALL Precip - Lead=01

Anomaly Correlation * 100
Target

 —

100 100

80

60

Frequency [%]

SST Anomaly [K]

All tmp2m lead—-1 prob. fcsts Nov2012 — present

201705 HSS=26

100
80

60
40
20

0

-20
100

80
60
40
20

Anomaly Correlation * 100
Target

40

W
NCAR. 7 GFD

IIII:liIIlIiI[IIIII:IiIIII

IIIIiII:IIIII:I]III|1II:|III

4

A

IIII | |||_|‘ ‘l
[0S covdo

IIIIFlIIIlIII[IIIIFIIIIII

i 1 0 B 1 4 B 4 0 I 1 §

5 HSS=10

IIIIIIFIIIIFI]III'IIF'III

201

Heidke Skill Scores (HSSs) Bar Plots
HSSs measure how well categorical forecasts perform relative to random guessing
Here, the HSSs bar plot was upgraded to include x labels and direct label

The HSSs are also computed for west and east partitions of the US, and like ACs,
the west, again, has higher skill compared to the east
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'13 14 15 16 17

150 H World NA Temp2m Running Avg = 29.35

‘13 ‘14 ‘15 ‘16 ‘17

150 IR World US Temp2m Running Avg = 25.06

B S G N R S O R I R t\x" A0 AP A0 w0 A t\{‘ N
\a° \\;(o‘ kl@‘\ W (DQ.Q $0“‘ \a{‘ ‘h’c)‘ ‘!\@“3 W CJQ,Q $0“‘ \'o{\ @’b‘ ‘!\@“3 W CJQ,Q ‘&0“5 \'a(‘ W ‘Ka.“i W cje,Q ?\0“" \'a(‘ W \1@\%

Initial Condition

Temp2m Heidke Skill Scores - IC=Nov 2012 to May 2017, Lead=01, Seasonal=False
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- _. - stats stating the average and median of all the models across time,
. F e L= ii histograms that display the category the individual members fall in,
®"0s5005s 050 05 0.5 0 05 0. ’ thick, opaque lines for ensemble averages, thin translucent lines for
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=—NCAR-CCSM4 CAN_CM4 * An interactive version is also available (top) which allows users to turn
—e— GFDL_FLOR —e— GFDL_CM2.1 on/turn off specific models that they believe have issues which then
""" —o—-NASA-GEOSS = recalculates the NMME line, show/hide ensemble members to reduce
—e— CAN_CM3 - clutter, and save sets of model selections and compare them quickly.
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