Assessment of sub-seasonal predictability and probabilistic prediction skill over the U.S.

Introduction

The subseasonal predictability of precipitation and temperature is examined for two global ensemble prediction system reforecast sets from the S2S Database, 1999-2010 (ECMWF VarEPS and NCEP CFSv2).

Methodology

1. Anomaly correlation skill of week 3-4 averages: ECMWF reforecasts from all the Monday and Thursday start dates in DJF are used; 3-day lagged ensembles are used for the CFSv2.
2. Pattern correlations of observed fields with observed NAO, PNA and Nino 3.4 indices, using dekadal averages.
3. Calibrated probabilistic forecasts using extended logistic regression based on Monday starts during JFM, and simple equal-weight MME. The training/validation is with leave-one-year-out cross validation.
4. All analyses are based on ensemble means.

Week 3-4 Anomaly Corr. Skill

- Correlations between model week 3-4 hindcasts and GCPC and ERA-interim (T \& Z500) data.
- Skill is comparable in both models.
- Precipitation skill is highest south of 30 N , with some skill over the NE and NW U.S.
- Temperature skill is highest over Oceans and south \& east U.S.
- Lobe of high skill in Z500 corresponds well with skillful areas in precip. and temperature.

Observed Teleconnections

- Maps are computed with dekadal averages with the seasonal cycle subtracted.
- Both observed precip. and temperature exhibit high correlations with all 3 indices south of 30 N , and moderate correlations over the NE U.S.
- Temperature correlations are higher, consistent with higher skill.

Model teleconnection skill
 How well do the models predict low frequency teleconnection modes?

- Skill is highest in winter, lowest in summer.
- Both models have skill exceeding 0.5 for both NAO and PNA.

Is the skill due to seasonal or sub-seasonal variability?

- Sub-seasonal part is isolated by subtracting seasonal averages.
- PNA skill is mostly sub-seasonal.
- NAO skill is both seasonal and sub-seasonal.
- Both models have comparable sub-seasonal skill.

Forecast Calibration \& MME

We apply extended logistic regression to construct calibrated sub-seasonal probabilistic forecasts, and average the forecast probabilities from 3 models to obtain a multi-model combination.

Precipitation RPSS Skill for JFM Starts

- Good probabilistic skill at week 2 (days 8-14), especially in the multi-model combination.
- The MME improves the positive skill of the best model and largely removes negative skill values in individual forecasts.
- The skill is near-zero at week $3-4$ lead; it is nonetheless higher than just the week 3 skill (not shown)

Reliability diagram for JFM Starts

- Reliability is notably increased by the multimodel combination

Conclusions

- Clear wintertime week 3-4 anomaly correlation model skill in PNA and NAO indices, as well as in geopotential height and surface fields.
- The PNA-related skill appears to be largely subseasonal, while the NAO skill has both subseasonal and seasonal components
- Extended logistic regression plus multi-model combination produces well-calibrated and skillful probabilistic forecasts at week 2.

