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< All three FLOR hindcasts produce similar WTs, with strong circulation biases
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The Approach
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» 1981-2013 hindcasts of the NOAA GFDL RMSE evident in FLOR wintertime
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Flux-adjustment and inclusion of
atmospheric ICs do not improve
raw model DJF precipitation
forecasts appreciably

Three different forecast setups:

1) P1: Only ocean ICs, standard FLOR
2) P1_FA: Only ocean ICs, flux-adjusted
FLOR to remove most SST biases
3) P2_FA: Both ocean and atmosphere

initialized, flux-adjusted FLOR

» WTs calculated from FLOR and

< Correlation skill poor
over U.S. in raw FLOR
forecasts (Fig. 5)

» The rectified WT hybrid
dynamical-statistical forecast
system substantially reduces

< Rectitfied WT hybrid
dynamical-statistical
forecast system greatly
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Figure 5. Pearson correlation skill of DJF precipitation forecasts. As in Fig. 4 but for the
Spearman correlation coefficient between forecast and verification.
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