

California Drought and the 2015-2016 El Niño

Benjamin A. Cash (bcash@gmu.edu)

Background

- California experienced severe drought from 2011-2017
- Mostly alleviated by record precipitation in winter 2016-2017
- o Followed multiple years of below-average rainy season precipitation

Observed NDJFM Precipitation – NINO34 Correlation

- Widespread hope that 2015-2016 El Niño event would end drought
- Previous events associated with large rainfall anomalies
- Clear north-south dipole pattern, wet conditions in southern California
- Peak magnitudes between 0.5 and 0.6
- Significant amount of unexplained variance
- What other factors could be playing a role?

1982-1983 NDJFM Precipitation Anomalies

Positive rainfall anomalies for all of the west coast (CPC Unified data)

Above average rainfall observed

Ensemble mean predicts above average rainfall

1997-1998 NDJFM Precipitation Anomalies

Positive rainfall confined to California Very different event in Pacific NW Above average rainfall observed

Ensemble mean predicts above average rainfall

2015-2016 NDJFM Precipitation Anomalies

Positive rainfall anomalies for Pacific NW

Slightly below average rainfall observed for Southern California

Ensemble mean predicts above average rainfall

What Happened?

materialize?

Why did expected rainfall not

- Variations between El Niño events? Not all events are the same
- Impact of other SST anomalies?
- Could "the Blob" or other feature be playing a role? o Internal variability?
- How strong is the forced signal? How influential is atmospheric noise?
- Why did the models fail to capture the 2015/2016 response?
- Models predicted above average rainfall for all three events
 - Correct for two out of the three

Ensemble Mean and Noise Correlation

- Let us decompose each model field into two components: $SST_{ij} = SST_i^E + SST_{ij}^N$ where SST_i^E is the ensemble mean for year *i*, and SST_{ij}^N is the deviation from the ensemble mean (noise) for year *i* and member *j*
- We can then calculate correlations between different components
 - Predicted (ensemble mean) components, e.g.: $r_E = corr(SST_i^E, SOCAL_i^E)$
 - Unpredicted (noise) components, e.g. $r_N = corr(SST_{ii}^N, SOCAL_{ii}^N)$
 - Ensemble mean is likely dominated by ENSO pattern
 - What is the structure of the noise patterns?
 - How do they influence southern California rainfall?

Ensemble Mean Correlations

- High positive values over SOCAL region by construction
- Negative correlations over Pacific NW • Local and tropical response consistent with response to ENSO

High positive values over SOCAL region

- **SOCAL** rainfall and global **SST**
 - Clear association between SOCAL rainfall and ENSO pattern
- Provides explanation for consistency of model rainfall response to ENSO events
- SOCAL rainfall and global z200
- High positive values in tropical eastern Pacific
- High negative values near US west coast • Clear resemblance to El Niño teleconnection pattern

Noise Correlations

- Values generally not significant
- Weak correlation with ENSO region Negative correlations with Pacific NW • Tripole pattern in north Pacific Centers overlap with ensemble mean pattern
- Response to circulation anomaly? Noise pattern is highly localized No apparent remote links

SOCAL rainfall and global z200

- Strong negative center off US West coast No correlation with increased heights in
- tropical Pacific Noise pattern is again relatively localized
- As with rainfall, overlap between
- ensemble mean and noise associations

Impact of Noise on 2015-2016 Event

- Does this analysis provide insight into the 2015/2016 event?
- Plume shows some members did produce below-average rainfall: How do these members differ?
- 2 highest and 2 lowest SOCAL rainfall members selected from CMC4, CCSM4, FLOR-A, FLOR-B, NASA-062012 • Important to note: Correlations taken from 1982-2009 hindcasts - 2015/2016 event not included in correlation analysis

Hypothesis: Differences between members in 2015/2016 forecasts will be consistent with noise patterns

Strong similarities for each composite to noise correlations

Conclusions

- Models Noise Component
 - Similar rainfall pattern along west coast as for ENSO
- Unpredicted (unpredictable?) variations in strength of west coast low strongly influence seasonal rainfall total
- Minimal association with SST
- Plausibly in response to circulation change • 2015/2016 Event
 - Differences between high and low SOCAL rainfall members

consistent with analysis of noise components

- Suggests atmospheric noise plays a key role in intra-event variability
- Observations
- Statistically significant correlation between NINO34 and California rainfall
- Significant amount of unexplained variance
- Straightforward explanation for intra-event variability
- Models Ensemble Mean
 - Statistically significant correlation between NINO34
- Association should repeat from event to event • Ensemble mean forecasts will likely be for enhanced rainfall for every event
- and California rainfall