

CPC SubX: Progress to date

Emerson LaJoie and Dan Collins

National Centers for Environment Prediction, NCEP NWS - Climate Prediction Center, College Park, MD More information: http://cola.gmu.edu/kpegion/subx/about.html

What is SubX?

The Subseasonal Experiment (SubX) is a NOAA/Climate Testbed project focused on subseasonal predictability and predictions. Six global models are producing seventeen years of ensemble retrospective forecasts initialized weekly to investigate subseasonal prediction and predictability. Additionally, one-year of real-time predictions will be produced and provided to the NOAA/NWS Climate Prediction Center as additional guidance for their week-3/4 outlooks. The project will test the skill of individual prediction systems as well as multi-model combinations.

The Objectives

- Collecting and serving data both internally at CPC for use by operational forecasters and for the external community via the IRI
- Providing a baseline verification particularly for the weeks 3-4 temperature and precipitation probability forecasts
- · Evaluating the skill of individual model systems
- Investigating multi-model combinations including selecting suitable models, optimizing the design of the system, and evaluation of the prediction products
- Enhancing communications between operational forecasts and the model forecast producers
- Participation in the NOAA/MAPP S2S Task Force (http://cpo.noaa.gov/Meet-the-Divisions/Earth-System-Science-and-Modeling/MAPP/MAPP-Task-Forces/S2S-Prediction-Task-Force)

The Models and Data

Model	Hindoast Period	Members	Perturbation Methodology	(days)	Atm	Oon	Sea loe	Land
NOEP/OF9/2	1999-2010	4/day	Time-lagged 0,6,12,16Z each day	45	T1289,64 ICs CFSR	MOM4L40 0.25 deg EQ; 0.5 deg global ICs CFSR	Same as Ocn	NGAH ICs GLDAS
NCEP/GEFS	1999-2015	20	EnKF & ETR	36	T574L64 for 0-8 day & T382 for 8-35 day ICs Atm DA	NA	N/A	T574 ICs GDAS
ECCC GEM	1995-2014	4	random isotropic perturbation	32	0.45x0.45 deg; 40 levels; IOs from ERA-interim	N/A	N/A	Offline SPS forced by ERA- Interim
NASA GEOS-S ADGCM	1981-2015	10	scaled difference of two consecutive days of analysis	45	GEOSS-1/2 degree horizontal resolution; 72 vertical layers ICs from MERRA2	MOM5 - 1/2 deg horizontal resolution, 40 vertical layers ICs GMAO Con Analysis	CICE ICs GMAD Oon Analysis	Catchement Land Sfc Model ICs MERRA-2 precipitation corrected
Nevy Earth System Model	1999-2015	4	time-lagged	45	NAVGEM-TODGGLSO ICs atmos DA	HYCOM-0.08 deg; 41 vertical layers ICs from Ocrafoe reenalysis	CICE4-0.08 deg ICs from Oon/ice reanalysis	Infine NAVGEM T0009 ICs from Agrmet
NCAPVOC8M4	1999-2015	3 or 4 per day	time-lagged	45	0.9x1.25deg L26	POPL60; 1deg global with 0.25 lat res in deep tropics	same as cosan	some as atmopshere
NOAWESPL FIM HYCOM	1999-2014	4 per week	time-lagged 12Z & 18Z Tues; 00Z & 08Z Wed	32	-30km w/64 vertical layers; ICs from CFSR	NA	N/A	NOAH land sto model; ICs from GFSR

CPC Priority 1 variables:

011 000 010 000 111 0 101010								
Variable	CF Standard Name	Abbres	Unit	Frequency				
Geopotential Height	geopotential_height	zg	m	Average of Instan	tatneous value	at 0,6,12,18Z		
On 850 and 200 hPa levels								
Variable CF Standard Name		Abbrev	Abbrev Unit Fred		requency			
Zonal Velocity	eastward_wind	ua	ms-1	Average of Instantatneous values at 0,6,12,18Z				
Meridional Velocity	northward_wind	va.	ms-1	Average of Instant	atneous value	at 0,6,12,18Z		
On a single level								
Variable		CF Standard	Name	Abbrev	Unit	Frequency		
2m Temperature		air_temperatu	re	tas	к	Daily Average		
Precipitation		precipitation	flux	pr	kgm-2s-1	Accumulated every 24hrs		
Surface Temperature (SST	surface_temp	erature	ts	к	Daily Average			
Outgoing Longwave Radii	toa_outgoing	longwave_flux	rlut	Wm-2	Accumulated every 24hrs			

Future CPC Products

- Probabilistic forecasts (eg, Week 3-4 Outlooks)
- Probability of Exceedence (POE) forecasts and extremes
- · MJO forecasts (see example right), possible teleconnections
- Evaluation of the hindcasts
 - Deterministic: Correlation, MSE
 - Probabilistic: Brier Skill Score, Heidke Skill Score, Reliability, Rank Probability Skill Scores
- Evaluation of realtime pseudo-operational forecasts
- · Calibration of probabilities; ensemble regression as a baseline

Climatologies and Figures – Harvey and Irma

We anticipate future work on estimating climatologies (see Science Questions), however as an initial approach we generally followed these steps

- Average across lead days for n members initialized on the same day
- · Average across years in the hindcast for each available date
- Smooth with a 31-day triangular weighted moving average

Science Questions

- Bias correction and probability calibration
- Consolidating of the MME
 - · Accounting for varying skill of models and model weighting
 - Possibly Bayesian Model Averaging
- Skill-spread relationships (spread within individual model ensembles and spread between models)
- Non-stationarity of model skill and bias (possibly related to climate change and/or ENSO/internal variability)

Harvey Storm track (above, wikipedia) Weeks 3-4 ahead of Harvey (left) Weeks 3-4 ahead of Irma (below)