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Figure 5: Reliability Diagrams
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Data and Methods
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Summary and Conclusions

Statistical-dynamical bridging using the forecast Nifo 3.4 index improves temperature forecast skill over the Climate Prediction Center forecast domain, particularly
for regions where dynamical models fail to reproduce the observed ENSO-temperature teleconnection pattern. The largest improvement occurs during the winter
seasons, when the ENSO-temperature teleconnection is strongest. In contrast, very little improvement occurs during spring, summer, or early fall. Merged forecasts
achieve the highest overall coverage of positive skill relative to bridged and calibrated forecasts. These results suggest that the CBaM post-processing method may
help improve seasonal forecast skill, although additional testing using real-time NMME forecasts is necessary.
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