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Introduction

Short-Term Climate Extremes: Prediction Skill and Predictability, Becker et al. (2012)
-"How well can we currently predict short-term climate extremes?”
-Showed extremes more predictable on monthly timescales.

This project looks at surface temperature and precipitation prediction skill on daily and weekly timescales.

Model: CFSv2
Observations: NCAR/NCEP Reanalysis 1

1999-2010: March, June, September, December

Measuring Prediction Skill

How Do We Quantify Prediction/Predictability?

» Anomaly Correlation Coefficient
2 2 F (s,j,m,7)O'(s,j,m) » ACC=1 if the forecast is perfect.
~ 1 » ACC=-1 if the reverse happens.
» s=space, j=year, m=target month, t=lead

Results: Start Day vs. Lead
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Defining an Extreme Event

AR (1) with m=0.7: Aed Lines +/-1645 Extrems Threshold
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Calculate the standardized anomaly for data set (Y).

Y(t)—climy

ANOMSTD (t) — stdy

If | ANOMqrp| > 1.645 (5t and 95t percentile threshold)
then the event is extreme.

Figure: Distribution of AR(1) processes using below equation.
Ye+1 = MYy + €
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No reason to expect extremes of a distribution to be more predictable
by random chance.

Relationship to ENSO
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Regression between the observed extreme events and the Nino3.4
standardized sea surface temperature (SST) anomaly. In all cases there
does not seem to be a relationship between ENSO and the extreme
events, indicating that there is another driving force behind the
increased skill.

CONCLUSIONS

Coinciding with the results found in Becker et al. (2012) the AC associated with the extreme time
series is higher on both daily and weekly time scales.

Additional skill is not due to the reduced sample size (proven in Becker et al. (2012), random chance,
or a teleconnection with ENSO.

Further investigation needs to be done in order to answer the questions why do extreme events have
more skill.




