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The PALS Land sUrface Model Benchmarking
Evaluation pRoject (PLUMBER)

Coordinated by Martin Best through GLASS panel

Evaluation (compare models and observations) versus
benchmarking (quantify expectations of performance a priori)

Benchmarks: Manabe bucket, Penman-Monteith implementations; 3
out-of-sample empirical benchmarks

20 Flux tower sites, 3 variables, 4 metrics
So far 9 LSMs, 15 LSM versions

All model output and site analysis in PALS web application




PALS

PALS: Protocol for the Analysis of Land Surface models Welcome gab [Log out] [PALS Home] [Help]

Currently showing workspace: GLASS Benchmark exit this workspace]
Data Sets Models Model Outputs _

Data Set | All Data Sets 4| Model | JULES.3.1 +| [ AmpleroJ3.1 | Variable [ Qe | Analysis Type | Timeseries P Display Benchmarks o

Timeseries

Smoothed Qle: 14-day running mean. Obs - AmpleroFluxnet.1.4 Model - Amplero_J3.1
This simply shows a smoothed time series of a
variable (14-day running mean) across the entire
— Observed Min = (-55.3, -72, 3.54, -20.1, -0.849) Score_smooth: 0.746, 0.638, 0.625, 0.619 data set. The red sections of the grey line at the
— Modelled Max = (372, 418, 240, 237, 275) Score all: 0.502, 0.4, 0.447, 0.414 bott?m of the graph show when the Fluxda.ta.org
—— B_Empilin Mean = (47.5, 33.7, 36.3, 35.7, 36) (NME_) quality control flag was used, usually meaning data

B_Emp2lin SD = (67.5, 56, 51.6, 52.6, 54.3) was gap-filled for that period (the gap-filled

B_Empskm27 percentage of the time series shown immediately
- above the grey line). At the top of the graph in the
centre, the minimum, maximum, mean and
standard deviation of the original (unsmoothed)
time series are shown. Values inside the brackets
follow the same order as the plot legend (e.g.
observed, modelled, benchmark time series). Two
scalar scores are also shown: the Normalised Mean
Error (NME) of the smoothed time series for each
model or benchmark, and the NME of the original
time series for each benchmark or model (labelled
"Score_all"). Values greater than 1 suggest the
mean of the observations would have been a
better estimate of the dynamics of the variable
than the model time series.
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Interpretation: gives an indication a model's
temporal divergence from observations. Good, for
9.3% of observed Qle is gap-filled: example, for looking at dry-down after rainfall
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PLUMBER — 20 flux tower sites

E — Evergreen Needleleaf M — Mixed Forest W — Woody Savanna
B — Evergreen Broadleaf G - Grassland S — Savanna

D — Deciduous Broadleaf C — Cropland P — Permanent Wetlands
M — Mixed Forest




The three empirical model benchmarks

All 3 empirical models relate met forcing and a flux and are trained with data
from sites other than the testing site (i.e. out of sample)

They are each created for LE, H, NEE:
o “1lin”: linear regression of flux against downward shortwave (SW)
o “2lin”: as above but against SW and surface air temperature (T)

o “3km27”: non-linear regression — 27-node k-means clustering + linear regression
against SW, T and relative humidity at each node

All are instantaneous responses to met variables with no knowledge of
vegetation type, soil type, soil moisture or temperature, C pools.
They tell us:
— The extent to which flux is predictable from e.g. SWdown - just 1 model input
— How a simple functional relationship represents flux in common diagnostics

— How predictable flux at is at a particular site, out-of-sample

All 3 automatically plotted alongside model and obs data on PALS




PLUMBER - variables and metrics

Sensible heat flux | Latent Heat flux Net Ecosystem Exchange
(H) (LE) (NEE)
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PLUMBER — results (old) — from Martin Best

— Manabe bucket

o—o Penman Monteith
4 1lin

&4 2lin

4 3km27
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Flux tower systematic bias?

Per time step energy conservation

Intercept: 36.8
Gradient.0.716"

"o L] - - r ..

Total imbalance: ~9.49 W/m2 per Ii_m_estel;';:'
Mean deviation:76.7 W/n2 per'time'éae_d.-l;."l.
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Rnet — Qg : TumbaFluxnet.1.3

Qle + Qh : TumbaFluxnet.1.3

Daily average energy conservation

Intercept: 7.45
Gradient: 1.02 .
Total imbalance: -228 Wh/m2 per day 3" 3//
Mean daily deviation: 390 Wh/m2 " 3™ * i~

T T T
100 150 200

Rnet — Qg : TumbaFluxnet.1.3

www.pals.unsw.edu.au




Qe+ Qh : TumbaFluxnet1.3

Qle +Qh: ElSaler2Fluxnet1.3

Per time step energy conservation

Flux tower systematic bias?

Daily average energy conservation

Intercept: 36.8
Gradient.0.716"

Totalimbalaode: -9.48 W2 per 1

Qle +Qn : TumbaFluxnet1.3

Intercept: 7.45

Gradient: 1.02

Totalimbalance: ~228 Wh/m2 per day _;
Mean daily deviation: 390 Whim2

200 400 600 800 1000
Rnet - Qg : TumbaFluxnet. 1.3

Per time step energy conservation
Intercopt: 38.7
Gradiont:0.454

Total imbalance: 15 Wim2 per timestep
Mean deviation: 107 W/m2 per timestep

Qle +Qh : ElSaler2Fluxnet1.3

100 150 200 250
Rnet - Qg : TumbaFluxnet.1.3

Daily average energy conservation
Intercept: 27.4
Gradiont:0.568

Total imbalance: 360 WVm2 per day
Mean dally deviation: 785 Whim2

Qe+ Qh : HowardFluxnet1.0

Per time step energy conservation

Daily average energy conservation

Intercept: 16.6

Gradient: 0.812

Totalimbalance: 10 Wim2 per timestep
Mean deviation: 58.8 W/m2 pef timestep

Qe + Qh : HowardFunet1.0

Intercept: 39.9
Gradient: 0.648

Total imbalance: 241 Whim2 per day
Mean daily deviation: 547 Wh/m2

500

Rnet - Qg : HowardFluxnet.1.0

100 200

Rnet - Qg : HowardFluxnet1.0

200 400 600 800 1000
Rinet - Qg : EISaler2Fluxnet 1.3

50 0 50 100 150 200
Rnet - Qg : EISaler2Fluxnet 1.3

Qe + Gh : AmpleroFiuxnet.1.0

Per time step energy conservation

Daily average energy conservation

Intercept 11.5
Gradient: 0681

Total imbalance: 14.3 Wim2 per timst
Mean deviton: 46.9 Wi per tmesto

Qe + Gh : AmpleroFiuxnet1.0

Intercept: 5.17
Gradient: 0.759

Total imbalance: 344 Whim2 per day
Mean dally deviation: 563 Whim2 ., " *

200 400

Rnet - Qg : AmpleroFluxnet 1.0

0 50 100 150

Rnet - Qg : AmpleroFluxnet. 1.0

200

Qle +Qh : BugacFlumet.1.4

Qle + Oh : FortPeckFluxnet. 1.3

Per time step energy conservation

Daily average energy conservation

Intercept: 215
Gradient: 0.769

Qle +Qh : BugacFluxnet 1.4

Intercept: -5.22

Gradient: 0.874

Total imbalance: 338 Whim2 per day
Mean dally deviation: 430 Wh/m2

400

Rnet - Qg : BugacFluxnet1.4

Per time step energy conservation

100 150

Rnet - Qg : BugacFluxnet 1.4

Daily average energy conservation

Intercept: 222
Gradient: 0.736
Total imbalance: ~11.3 Wim2
Mean deviation: 47.2 W/m2 pe

Qle + Gh : FortPeckFluxnet 1.3

Intercept: 15.5
Gradient: 0.898 .
Total imbalance: ~271 Whim2 g day
Mean dally deviation: 505 Wh/an2

o 500
Rnet - Qg : FortPeckFluxnet 1.3

o 100 200
Rnet - Qg : FortPeckFluxnet 1.3

Qlo +Qh : BlodgettFluxnet 1.3

Per time step energy conservation

Daily average energy conservation

Intercept: 10.2
Gradient:0.79 .
Total imbalance: 129 W/m2 per, times
Mean deviation: 54.5 Wim2 per tirhes

Qle +@h : BlodgettFluxnet 1.3

Intercept: -9.98
Gradient: 0.973

Total imbalance: 310 Whm per day _
Mean dally deviation: 486 Wnim2

400 600 800 1000
BlodgettFlumet 1.3

100 150 200
Finet - Qg : BlodgettFlunet 1.3

250

Qle + QN : HesseFluxnet 13

Per time step energy conservation

Daily average energy conservation

Intercept: -5.04
Gradient: 0.593
Totalimbajance: 33.2 Wm2 per timestep
Mean uew'rm 61.4 Wim2 pertimestep

Qle + QN : HesseFluxnet 1.3

Intercept: ~13.2

Gradient: 0.712

Total imbalance: 796 Whim2 per day
Mean dally deviation: 921 Wvm2

600
Rinet - Qg : HesseFluxnet 1.3

100 200 300 400

Rinet - Qg : HesseFluxnet 1.3

500

Qle +Qh : SyvaniaFluxnet. 1.4

Per time step energy conservation

Daily average energy conservation

Intercept: 6
Gradient: 0.624

Total imbalance: 18.1 W/m2 per timestep
Mean deviation: 48.9 W/m2 per timestep

Qle +Qh : SyNaniaFluxnet 1.4

Intercept: 4.47
Gradient: 0.648

Total imbalance: 43 Whim2 per day
Mean dally deviation: 617 Wh/m2

600 800

Rnet - Qg : SylvaniaFluxnet 1.4
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Rnet - Qg : SylvaniaFluxnet 1.4




Flux tower systematic bias?

Sensible heat annual cycle examples where benchmarks win — JULES:

Average monthly Qh: Obs - MopaneFluxnet.1.4 Model - Mopane_J3.1

= Observed
Score: 3.02, 0.421, 0.434, 0.429
—  Modelled ) ) )

~ B_Emp1lin
B_Empz2lin Average monthly Qh: Obs - SylvaniaFluxnet.1.4 Model - Sylvania_J3.1
B_Emp3km27

3bieﬂv§d Score: 1.97, 0.854, 0.697, 0.687
—— Modelle (NME)

— B_Emp1lin
B_Empa2lin
B_Emp3km27
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Average sensible heat flux W/ m'

Average sensible heat flux W/ m’

Flux tower systematic bias?

Average monthly Gh: Obs - EspirraFluxnet.1.4 Model - Espirra_J3.1

— Observed

— Modelled

—— B_Emptiin
B_Emp2lin
B_Emp3km27

Score: 0.394, 0.41, 0.423, 0.398
(NME)

Average monthly Qh: Obs - HarvardFluxnet.1.4 Model - Harvard_J3.1

Average sensible heat flux W/ m’

Average monthly Gh: Obs - 1.4 Model - b

Observed
Modelled
8_Empilin
8_Emplin
B_Emp3km27

Score: 0.946, 0.395, 0.407, 0.395
(NME)

Average monthly Qh: Obs - BlodgettFluxnet.1.4 Model - Blodgett_J3.1

—— Observed Score: 1.53, 0.964, 0.828, 0.776
— Modelled (NME)

B_Empz2lin

B_Emp3km27

Average sensible heat flux W/ m’

— Observed

— Modelled

— B_Emptin
8_Emplin
B_Emp3km27

Score: 0.665, 0.32, 0.346, 0.3
(NME)

Average sensible heat flux W/ m’

Average sensible heat flux W/ m’

Average monthly Qh:

Sensible heat annual cycle examples where benchmarks win — JULES:

Obs - ElSaler2Fluxnet.1.4 Model - ElSaler2_J3.1

~—— Observed
—— Modelled

8_Emp2lin
B_Emp3km27

Score: 2.23, 1.67, 1.54, 1.42
(NME)

Average monthly Qh:

Obs - HyytialaFluxnet.1.4 Model - Hyytiala_J3.1

~— Observed

B_Emp2lin
B_Emp3km27

Score: 0.393, 0.264, 0.181, 0.24
(NME)

www.pals.unsw.edu.au




Average sensible heat flux W/ m

Average sensible heat flux W/ m’

Flux tower systematic bias?

Sensible heat annual cycle examples where benchmarks win — NOAH:

Average monthly Qh:

Observed
Modelled

B_Emp2lin
B_Emp3km27

Obs - MopaneFluxnet.1.4 Model - noah33_mopane

Score: 3.59, 0.421, 0.434, 0.429
(NME)

Average monthly Qh:

Obs - HowlandmFluxnet.1.4 Model - noah33_howland

Observed
Modelled

B_Empakm27

Score: 0.854, 0.395, 0.407, 0.395
(NME)

Average sensible heat flux W/ m’

Average sensible heat flux W/ m’

Average monthly Gh: Obs - KrugerFluxnet.1.4 Model - noah33_kruger

— Observed
Score: 0.982, 1.05, 1.35, 0.534
—— Modelled (NME)

— B_Emptln
B_Emp2iin
AN B_Empakm27

Average monthly Qh: Obs - HowardFluxnet.1.4 Model - noah33_howard

— Observed

— Modelled

—— B_Emptlin
B_Emp2iin
B_Empakm27

Score: 1.95, 1.12, 0.954, 0.804
(NME)

Average sensible heat flux W/ m’

Average sensible heat flux W/ m’

Average monthly Gh: Obs - HyytialaFluxnet.1.4 Model - noah33_hyytalia

— Observed
Score: 0.421, 0.264, 0.181, 0.24
—— Modelled (NME)

—— B_Emptlin
B_Emp2iin
B_Emp3km27

Average monthly Qh: Obs - ElSaler2Fluxnet.1.4 Model - noah33_elsaler2

— Observed
Score: 2.38, 1.67, 1.54, 1.42
—— Modelled (NME)

—— B_Emptlin
B_Emp2iin
B_Empskm27

www.pals.unsw.edu.au




Average sensible heat flux W/ m

Average sensible heat flux W/ m

Sensible heat annual cycle examples where benchmarks win — COLASSIB:

Average monthly Gh:

Obs -

Flux tower systematic bias?

1.4 Model -

— Observed

— Modelled

— B_Empiin
B_Emp2lin
B_Emp3km27

Score: 10.4, 7.67, 5.57, 4.64
(NME)

Average monthly Qh: Obs - FortPeckFluxnet.1.4 Model - FortPeck_Flux

Observed
Modelled
8_Empilin
8_Empalin
B_Empskm27

Score: 0.614, 0.281, 0.393, 0.371
(NME)

Average sensible heat flux W/ m’

Average sensible heat flux W/ m’

Average monthly Qh: Obs - .1.4 Model -

— Observed

— Modelled

— B_Emptlin
B_Emp2lin
B_Emp3km27

Score: 0.821, 0.32, 0.346, 0.3
(NME)

Average monthly Qh: Obs - EspirraFluxnet.1.4 Model - Espirra_Fluxnet

Observed
Modelled
B_Emplin
B_Emp2lin
B_Emp3km27

Score: 0.634, 0.41, 0.423, 0.398
(NME)

Average sensible heat flux W/ m’

Average sensible heat flux W/ m

Average monthly Qh: Obs - HowlandmFluxnet.1.4 Model - HowlandmFlux

Observed Score: 0629, 0.395, 0,407, 0.395
Modelled v

B_Empliin

B8_Empzlin

B_Empakmz7

Average monthly Qh: Obs - KrugerFluxnet.1.4 Model - Kruger_Fluxnet

—— Observed
Score: 1.56, 1.05, 1.35, 0.534
— Modslied (NME)

— B_Emptlin
B_Emp2lin
Emp3km27
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Flux tower systematic bias?

LSMSs’ inability to outperform an out-of-sample linear regression
does not appear to be due to systematic measurement bias in
sensible heat fluxes.

In most cases, this is not about a mean offset

LSMs are not using the information available in met forcing
appropriately

Vegetation, soil moisture, temperature or carbon stores are not
required to produce predictions as accurate as current LSMs in this
application




Hypothesis 1: Flux towers are at the wrong scale

No explicit length scale in most LSMs
Several LSMs tune parameters for vegetation types using flux tower data

Most LSMs deal with surface heterogeneity using tiling

o Is a 500m fetch / footprint really inappropriate for a 20km forecast?

Diagnostic process evaluation at larger spatial scales is difficult — measured
met and flux data at model time step size don'’t exist:

o Much more likely to have unidentifiable compensating errors:
— fewer aspects of a simulation are constrained
— Much longer time steps for evaluation — e.g. daily, monthly
— Aggregate behaviour is modelled — e.g. across tiles

o Hard to disentangle forcing vs. LSM errors, esp. in coupled environment




Hypothesis 2: State initialisation is inappropriate

* Repeated spin-up on flux tower met data — no guarantee its representative

» Likely not perfect, but unlikely the major issue — very few cases of flux being
consistently too high or too low for all months of average annual cycle:

Latent heat neither
JULES 16
NOAH 16
COLA 18
CABLE 16

* More likely an issue for NEE?

NEE Too high | Too low | neither
JULES 1 p 17
CABLE 3 3 16




Hypothesis 3: LSMs are conceptual models only

Most core process representations were developed using very little
observational data — few sites, few seasons, few times of day — and were
rather based on conceptual models — disagree?

What does it mean to say we have “physically-based” model of a natural
system when we don’t have enough data to construct an empirically-based
model?

How do we know our conceptual representations have any value in the
absence of observations that can confirm process representation?

Has the drive to add more processes into LSMs (often based on sparse
data sets) led to intractable modelling systems with relatively poor
accuracy?




Hypothesis 4: Over-parameterisation is hurting

If parameters are not BOTH physically meaningful and measureable for a
model’s application, they need to be calibrated — moving a model further
toward being empirical rather than physically based

The calibration process limits the scope of a model to the particular
circumstances of the calibration — sites, data sets, time periods, temporal
scale, metrics.

Should we have LSMs with 40+ spatially varying parameters when we have
only coarse scale observations for at most 3 or 47

Are inappropriate values for the unconstrained parameters (through
calibration) actively inhibiting predictive ability?




Conclusions / questions

The climate community is coming to terms with a transition from models
being hypothesis testing tools for a particular experiment to models being
tools for predicting all the processes they represent — a fundamental change

— Focus on process representation, rather than scores in a few metrics

— Narrow set of metrics will drive an ‘empirical model’ solution - compensating errors that result
in metric-dependent and scale-dependent models

Could we have 3 or 4 parameter LSMs that give similar / better results?

Should we only include processes that can be evaluated with observations
in the scope of their application — “data-based realism”?

— Can we commit to the ideal of all model variables being real world quantities and not model-
specific quantities tuned to aid prediction?




PLUMBER hypotheses

. Flux towers are at the wrong spatial scale
. Inappropriate state initialisation

. LSMs are essentially conceptual models — too many processes not
supported by data in the scope of their application

. Over-parameterisation is hurting — calibration of unconstrained parameters
inhibits predictive capacity




