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Motivation

e Land-atmosphere interaction and coupling
strength remain weak links in current land-surface
and atmospheric prediction models.

e Coupling strength affects surface fluxes, so
important for weather and climate.

e \We need to understand the many land and
atmospheric processes and interactions, with proper
representation in weather and climate models.

e Coupling begins locally.



Land-Atmosphere Interaction

Betts
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Figure 1. Schematic showing some important land surface-
atmosphere interactions on different timescales.




Land-Atmosphere Interaction

Beljaars
(2005)
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Land-Atmosphere Interaction

Adapted from Local Land-Atmg

Ek & Holtslag e !
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Land-Atmosphere Interaction

van Heerwaarden et al
(2009)

entrainment
heating

Negative feedback
mechanisms and the
relationships among 1.1
variables that direct

i heating
regulate evaporation. :

Figure I. Feedbacks in the coupled land—atmosphere system. Closed

arrows represent positive relationships, and open arrows negative

relationships. Each of the three feedbacks has a distinct line style. LE

is the latent heat flux, H is the sensible heat flux, € is the bulk potential

temperature of the CBL, g is the bulk specific humidity of the CBL
and h is the CBL height.
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Near-Surface Interactions

e What is nature of near-surface land-atmosphere
coupling? For strong (weak) coupling, a given soil
moisture change yields large (small) ET change.

e \What is relationship between soil moisture and ET
(or ef) in terms of near-surface turbulence,
atmospheric variables, vegetation and soil processes.

e Expand work of Jacobs et al (2008), Jarvis (1985) et
al, and others.
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Near-Surface Interactions:
Soil moisture - transpiration relationship

Evaporative fraction for ; s + Lppoess
- - e = .
transpiration: & I (1 o ‘Z—)

Penman-Monteith

Evap. fraction change with soil moisture change:

dlne f; 1 s+v\ g. ! s(R, —G) = 00,., boG
. == -] —+1 + | — — 4+ 1 , -
JO 0 (—)r; g Ya PCpYa 0€ (—)ns ( L)Il - (-7')

ga/gc-term: stomatal control vs sfc- vG-term: soil heat flux
layer turbulence, range: 0-1 (Jos, 185) contribution, 0 to O(1)

Stronger Strong stomatal control, Strong turbulence, dry air,

Coubling: strong turbulence, e.gq. large G, small Rn, large soil
PIiNG:  corest with dry soil heat flux, wet soil

Weaker Weak stomatal control, Weak turbulence, moist air,

Coupling: weak turbulence, e.g. small G, large Rn, small soil

grassland with wet soil heat flux, dry soil




Near-surface Interactions:
Vegetated

Stronger

“ewv” coupling parameter
Coupling
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Near-Surface Interactions:
Evaporative Fraction vs Soil Moisture

e evaporative fraction (ef) v 10 T w:’& vy 3 A% Aa e
ga/gc-term (coupling J Lvy "V, ¥
strength) from surface flux
site observations (“Fluxnet”) 2 1
o

e higher ef: = v
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. ol
coupling for forests. go.s J
- weaker land-atmosphere ? -
coupling for cropland and @ o '.;-'f
grassland. § | A evergreen forest ‘3:..;:'3%
e lower ef: strong 2 4 A deciduous forest sad eyt
coupllng regardless of ® cropland s
vegetation type: due to 1o Iang o
stronger surface heating 0.0 grassian Ly
and turbulence (larger Tl 1 T A TS S
ga, smaller gc). evaporative fraction (ef) "

Need to include vG-term




Near-Surface Interactions:
Soil moisture — “bare” soil evap relationship

Evap. frac. for bare Puw Ly (5(%),130 LK
- = € p— - \c
soil evaporation: v R —G| 6z ° N
(can’t use Ed=f(6)Ep) Mahrt & Pan (1983)
Evap. fraction change with soil moisture change:
dne g B 1 :(;),v!w (G 4+ 2) (’f(;),“] se + (25 + 3) l b3(s
o0  O,. 1+ 80,. se R, — G
----------- r—--_--_---- --T_--
®-term: soil hydraulic bG-term: soil heat
properties contribution flux contribution
Stronger ] Large soil heat
Coupling: Wet soil flux, small Rn,
wet soil
Large Rn, small
D Dry soil soil heat flux,

Coupling: dry soil
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Land-PBL Interaction:
Cloud Formation

e How does land surface impact onset of
Cumulus?

e What is the role of soil moisture and
atmospheric processes?
e How to quantify?

e Relative humidity evolution (RH tendency) at
the Atmospheric Boundary Layer (ABL) top is
expected to control cloud initiation:

g=specific humidity (g/kg)

RH = q/qs gs=saturation specific humidity (g/kg)




Land-PBL Interaction:
Relevant equations
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Land-PBL Interaction:
RH tendency at PBL top
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Land-PBL Interaction:
Land & PBL processes and RH tendency

Surface
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Land-PBL Interaction:
Observations

e Evaporative fraction +-2
~constant, ne o §
increases during day._ |z
How general? s
e Observed mid- 27 8
afternoon ABL cloud ¢ .i-{—==— /f 1.00

formation (<20%

cover)
1 -
e Need to evaluate Eﬁbfﬁég:;y(gzo )

data sets from more 27200 3ruet<o’ @ 055 T
field programs. 3 T moister soil—>

I I I I [ I
0.0 0.2 0.4 0.6 0.8 1.0
evaporative fraction (ef)

non-evaporative terms (ne
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Land-PBL Interaction:

Sensitivity tests for coupled land-PBL model
and cumulus initiation

weaker

. inversion
stronger dry air

inversion . .ist air

e Examine role of soil moisture: vary soil moisture
from dry to wet,

e Vary inversion strength from weak to strong,

e Vary dry air above dry air above the boundary layer
from dry to moist,

e Other tests: different vegetation and soil types,
background advection, different regions & seasons.

dry soil wet soil



Land-PBL Interaction:

Model sensitivity tests and

RH tendency
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Land-PBL Interaction:
Boundary-layer growth vs dry air entrainment
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o if Ag > critical value (more negative/drier, =fct(h,RH)), then ne
decreases with decreasing above-ABL stability, so dry-air entrainment
“wins” over BL growth. 2



Land-PBL Interaction:
Diurnal land-atmos. coupling experiment (DICE)

Objective: Assess impact of land-atmosphere feedbacks.

Stage 1: stand alone land, and stand alone single column model (SCM).
Stage 2: Coupled land-SCM.

Stage 3: Sensitivity of different LSM and SCM to variations in forcing.

Data Set: CASES-99 field experiment in Kansas, using 3 days: 23-26
Oct 1999, 19UTC-19UTC.

Joint GEWEX GLASS-GASS project —outgrowth of GABLS2 where
land-atmosphere coupling was identified as a important mechanism.
Lead by Martin Best and Adrian Lock (UKMO).

SCM SCM, | | SCM, | | sSCM, | | SCM,
* A A

1b ~ N ., Least sensitive
SCM [\a

Observations

ll.v Jt “ar
AT M?st sensitive

1a

* \ r A 4
LSM LSM, |[LSM, | |LSM, | | LSM,

Stage 1 Stage 2 Stage 3



Land-PBL Interaction:
Initial DICE phase 2 (coupled) results

Sensible Heat Flux ' SHF is too large at 7night

......

Time (day of Oct, CDT) Courtesy Best & Lock

First DICE workshop at UKMO, Exeter, UK, 14-16 Oct 2013. ”




Summary

e Process level understanding is required to properly
represent land-atmosphere interaction (e.g. near-
surface, land-PBL) in weather and climate models to
get the "Right answers for the right reasons.”

e Data wish list: Extensively "mine” Fluxnet land data
sets and PBL field programs for many different
regions/seasons (including diurnal cycle); good soil
moisture measurements & bare soil sites needed.

e Collaborative efforts from GEWEX GLASS PLUMBER/
PALS, LoCo, GLASS-GASS DICE, GABLS, and other
programs/projects - use such testing procedures in
our model development. "Step-wise”, "Pyramid”

e Important consideration: scale-dependencies and
single-site representativeness vs model grid scale.
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