Scaling laws for the heterogeneously heated free convective boundary layer

Chiel van Heerwaarden, Juan Pedro Mellado and Alberto De Lozar

Max Planck Institute for Meteorology, Hamburg, Germany COLA/LSM Workshop, 5 December 2013

Motivation: a meteorological problem

• Heterogeneous heating of a CBL leads to secondary circulations that can influence the turbulence, surface energy balance or cloud formation

- Under which conditions do the strongest secondary circulations occur?
 - Patton et al. (2005): heterogeneity size $X_H = 4 9$ times CBL height.
- When does the transition to a horizontally homogeneous CBL occur?

Two examples of a heterogeneously heated atmosphere

Sea ice in the polar regions (Photo by Dirk Notz)

> Agriculture near Amarillo, TX, USA (Google Earth)

How can we study this problem?

- What do these meteorological cases have in common?
 - Heterogeneous heating of a stratified atmosphere from below
 - Surface contains heterogeneities with a size, a distance and a heat flux

- Two canonical cases in fluid mechanics can be found in this system
 - Isolated thermals in a stratified fluid (Morton et al., 1956)
 - Convective boundary layer (Deardorff, 1970; Businger et al., 1971; Kaimal et al., 1976)

linear stratification N²

Derivation of scaling laws requires a non-dimensional system

Set of non-dimensional parameters: ullet

 $\left\{\frac{\nu}{\kappa}, \frac{L}{n}, \frac{X_H}{L_0}, \frac{X_R}{L_0}, \frac{B_{0L}}{B_0}, \frac{X_I}{L_0}\right\}$

- Prandtl number
- Scale separation (equal to Reynolds number $Re^{3/4}$)
- Heterogeneity size over plume size
- Patch size over plume size
- Surface flux over non-patch areas over mean surface flux (heterogeneity amplitude)
- The interface sharpness

 $\eta = \left(\frac{\nu^3}{B_0}\right)^{\frac{1}{4}}$ Kolmogorov length (smallest length scale)

Two-dimensional parameter space

patch distance X_H / turbulence length scale L

Regimes according to Mahrt (2000)

LES / DNS experiment: influence of the heterogeneity size X_H/L_0

- Maintain area coverage (X_R²/X_H²) and heterogeneity amplitude (B_{0L}/B₀)
- Increase heterogeneity size (X_H/L_0)
- Three series of experiments
 - $B_{0L}/B_0 = 0$ (100% flux over patch)
 - $B_{0L}/B_0 = 0.4$ (80% flux over patch)
 - $B_{0L}/B_0 = 0.8$ (60% flux over patch)

patch distance X_H / turbulence length scale L

Transition from the meso-scale to the micro-scale regime

Results: the influence of heterogeneity size X_H/L_0

Simulations without flux in non-patch areas $(B_{0L}/B_0 = 0)$

- Three different phases
 - Peak in kinetic energy,
 - Phase of constant normalized kinetic energy (size does not matter)
 - Transition from the meso- to the micro-scale regime
- Transition not at fixed ratio X_H/h , but at a lower ratio for larger X_H/L_0
 - In other words, larger heterogeneity sizes merge relatively easier

Simulations with a flux in non-patch area ($B_{0L}/B_0 = 0.4$)

- Time of occurrence peak and transition function of heterogeneity amplitude
 - Optimal state occurs later, while transition occurs earlier compared to $B_{0L}/B_0 = 0$
- Integrated kinetic energy increases with heterogeneity size
- Time of occurrence of peak does not scale with X_H/h either

für Meteoroloaie

Dependence on heterogeneity size consistent over simulations

• Timing of optimal state (dots) and of transition (triangles) scales in all experiment

- Scaled time axis of the form:
 - X_R/X_H term comes from experiment 2

$$\gamma \left(\frac{h_{enc}}{L_0}\right) \left(\frac{X_R}{X_H}\right) \left(\frac{X_H}{L_0}\right)^{-\frac{2}{3}}$$

Scaling leads to collapsing time evolution

- Optimal state and the transition from meso- to micro-scale regime occur under same scaled time
- Kinetic energy scaling effective in scaling the energy in the peak (*part of study, not shown in presentation*)

Conclusion: a comparison with previous work

- Patton et al. (2005): optimal state between 4 and 9 X_H/h (shaded area)
- Our results are able to explain the wide range and to be more exact

- Strongest circulations occurs at a higher ratio of X_H/h for larger heterogeneity sizes
- Time of peak and transition very sensitive to heterogeneity amplitude

