Scaling laws for the heterogeneously heated
free convective boundary layer
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Motivation: a meteorological problem

Heterogeneous heating of a CBL leads to secondary circulations that can influence
the turbulence, surface energy balance or cloud formation
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Under which conditions do the strongest secondary circulations occur?
e Patton et al. (2005): heterogeneity size Xy =4 - 9 times CBL height.

When does the transition to a horizontally homogeneous CBL occur?



Two examples of a heterogeneously heated atmosphere
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How can we study this problem?

 What do these meteorological cases have in common?

 Heterogeneous heating of a stratified atmosphere from below

* Surface contains heterogeneities with a size, a distance and a heat flux
linear stratification N?
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 Two canonical cases in fluid mechanics can be found in this system
e [solated thermals in a stratified fluid (Morton et al., 1956)
e Convective boundary layer (Deardorff, 1970; Businger et al., 1971, Kaimal et al., 1976)
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Derivation of scaling laws requires a non-dimensional system

* Set of non-dimensional parameters:

{V L XH XR BOL XI}
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linear stratification N2

e Prandtl number .
Ozmidov

viscosity v

e Scale separation (equal to Reynolds number Re3/ 4) length Lo thermal diffusivity k

A
e Heterogeneity size over plume size

e Patch size over plume size / N\
Y

mean buoyancy flux Bo

* Surface flux over non-patch areas over
mean surface flux (heterogeneity amplitude)

 The interface sharpness

1
(Bo ) 2 Ozmidov length

Lo = N3 (largest length scale)
3 1
(VY 4 Kolmogorov length heterogeneity size XH
N = B_O (smallest length scale)
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patch size Xr / turbulence length scale L

Two-dimensional parameter space
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LES / DNS experiment: influence of the heterogeneity size Xu/Lo

« Maintain area coverage (Xg%/Xn?)
and heterogeneity amplitude
(BoL/Bo)

* Increase heterogeneity size (Xn/Lo)

 Three series of experiments
* Bo/Bo=0(100% flux over patch)
e Bo/Bo=0.4(80% flux over patch)
 Bo/Bo=0.8(60% flux over patch)
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Transition from the meso-scale to the micro-scale regime
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Results: the influence of heterogeneity size Xu/Lo




Simulations without flux in non-patch areas (Bo./Bo = 0)

 Three different phases
* Peak in kinetic energy,
e Phase of constant normalized kinetic energy (size does not matter)

* Transition from the meso- to the micro-scale regime

e Transition not at fixed ratio Xu/h, but at a lower ratio for larger Xu/Lo

* In other words, larger heterogeneity sizes merge relatively easier
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Simulations with a flux in non-patch area (Bo./Bo = 0.4)

 Time of occurrence peak and transition function of heterogeneity amplitude

e Optimal state occurs later, while transition occurs earlier compared to Bo/Bo = 0
* |Integrated kinetic energy increases with heterogeneity size

e Time of occurrence of peak does not scale with Xu/h either
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Dependence on heterogeneity size consistent over simulations

 Timing of optimal state (dots) and of transition (triangles) scales in all experiment
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Scaling leads to collapsing time evolution

 Optimal state and the transition from meso- to micro-scale regime occur under
same scaled time

* Kinetic energy scaling effective in scaling the energy in the peak
(part of study, not shown in presentation)
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Conclusion: a comparison with previous work

Patton et al. (2005): optimal state between 4 and 9 Xu/h (shaded area)

Our results are able to explain the wide range and to be more exact
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Strongest circulations occurs at a higher ratio of Xu/h for larger heterogeneity sizes

Time of peak and transition very sensitive to heterogeneity amplitude



