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A rotated empirical orthogonal function (REOF)
analysis of the observed seasonal mean sea surface tem-
perature (SST) anomalies for 1950-1998 from the tropi-
cal Atlantic basin shows that there are three important
patterns of variability (Fig. 1):

1.  Southern Tropical Atlantic (STA) Pattern (Fig.1a): The
SST fluctuations are centred near the Angola coast
and expand toward the equator into the Gulf of
Guinea.

2. Northern Tropical Atlantic (NTA) Pattern (Fig.1b):
This pattern is characterized by SST anomalies cen-
tred near the African coast in the northern tropical
Atlantic Ocean.

3.  Southern Subtropical Atlantic (SSA) Pattern (Fig.1c):
The SST fluctuations are in the open ocean of the
subtropical South Atlantic.

Both the STA and NTA have been shown as lead-
ing tropical Atlantic modes in many previous studies
(see, e.g., Enfield and Mayer, 1997; Dommenget and Latif,
2000), which contribute to the fluctuation of the equato-
rial SST meridional gradient. The SST gradient then af-
fects the position of the inter-tropical convergence zone
(ITCZ) and rainfall over the ocean and its adjacent re-
gions (Nobre and Shukla, 1996). The STA is also associ-
ated with the anomalous events in the Gulf of Guinea
and near the Angola coast (Hirst and Hastenrath, 1983;
Huang et al., 1995). The SSA has been demonstrated to
be the dominant SST fluctuation in the subtropical South
Atlantic Ocean (Venegas et al., 1997). Previous studies
also demonstrated that regional air-sea coupling (e.g.,
Zebiak, 1993; Chang et al., 1997) and remote forcing fac-
tors, such as the El Niño/Southern Oscillation (ENSO),
play roles in forming some of these SST patterns (e.g.,
Nobre and Shukla, 1996; Enfield and Mayer, 1997;
Saravanan and Chang, 2000; Czaja et al., 2002). The sci-
entific question, then, is whether these SST patterns are

externally forced or can be generated as intrinsic modes
of the tropical Atlantic ocean-atmosphere processes.

To answer these questions, we have analysed the
Atlantic Ocean variability simulated by a coupled ocean-
atmosphere model, in which ocean-atmosphere coupling
is included only within the Atlantic Ocean between 30oS-
65oN. Therefore, one major potential remote-forcing fac-
tor to the tropical Atlantic, the ENSO, is suppressed. The
oceanic and atmospheric components of the coupled
GCM, referred to as the OGCM and the AGCM respec-
tively hereafter, are described in more detail by Huang
et al. (2002). In the coupled region, all surface fluxes simu-
lated by the AGCM and the SST simulated by the OGCM
are supplied, each to the other component, at daily in-
tervals. Over the uncoupled portion of the global do-
main, the SST is prescribed for the AGCM and the sur-
face wind stress is prescribed for the OGCM with ob-
served monthly climatological data. A 10o-wide zone in
the South Atlantic Ocean within 30oS-40oS is used to blend
the coupled and uncoupled portions of the domain. The
coupled run has been conducted for 200 years. The out-
put from the last 110 years is used in this analysis.

Our results show that the leading SST patterns
shown in Fig. 1 can be reproduced quite realistically by
this regionally coupled model (Fig. 2). In particular, the
model NTA and SSA patterns (Fig. 2b, c) have ampli-
tudes comparable to their observed counterparts (Fig.
1b, c) and explain a significant amount of the total vari-
ance. This seems to suggest that these patterns can be
produced by air-sea coupling within the Atlantic Ocean
or by the oceanic responses to atmospheric internal forc-
ing, in which there was no external SST forcing.

The model STA pattern (Fig. 2a), however, is
weaker in its strength, especially to the north of 10oS,
and explains much less variance, than it does in the ob-
servations (Fig. 1a). Since the observed STA pattern im-
plies air-sea interactions sensitive to the equatorial wind
in the western and central Atlantic (Hirst and Hastenrath,
1983; Zebiak, 1993), its weak amplitude in the coupled
model suggests that these equatorial processes are not
adequately simulated. We suspect that this situation is
related to a warm mean SST bias to the south of the equa-

Coupled Ocean-Atmosphere Variability in the Tropical Atlantic Ocean



Volume 7, No. 3/4, September 2002                                  CLIVAR Exchanges

25

tor. The bias then is related to the fact that in the coupled
model the ITCZ has two preferred locations. From boreal
summer to fall, the ITCZ is located to the north of the
equator. However, it shifts to the south of the equator
from January to May. During these months, it tends to
block the southeast trade winds from reaching the equa-
torial zone.

The effect of this systematic error on the SST vari-
ability can be seen in the structure of the standard de-
viation of SST anomalies in the model (Fig. 3b). Although
the model reproduced the main features of the observed
variability (Fig. 3a), its major difference from the obser-
vations is a zonal belt of minimum standard deviation
(less than 0.3oC) between 5o-15oS. This zone largely cuts
off the link between the fluctuations near the Angola
coast and those within the equatorial wave-guide and

splits them into two separate modes. In reality, however,
they are closely connected (Fig. 3a, see also, Hirst and
Hastenrath, 1983). As a result, the model STA pattern is
significantly weakened. Our composite analysis based
on time series of the STA modes shows that, unlike the
observations, the model STA pattern is much less corre-
lated with the equatorial winds in the central and west-
ern equatorial Atlantic.

Our further analysis suggests that anomalous
events associated with both the NTA and the SSA are
mainly associated with the anomalous surface heat fluxes
caused by the changing trade winds. The wind changes,
in turn, are associated with the fluctuations of the sub-
tropical anticyclones in the atmosphere, which, apart
from regional air-sea interactions within the tropical At-
lantic, are also connected with the extra-tropical varia-

Obs. SSTA REOF Modes

STA

NTA

SSA

STA

NTA

SSA

RCGCM SSTA REOF Modes

Fig. 1: The spatial patterns of the (a) 1st, (b) 2nd, and (c) 3rd

REOF modes of the seasonal mean SST anomalies for 1950-
1998. The SST data are from U.S. Climate Prediction Center’s
analysis. The magnitude of the patterns corresponds to two
times of the standard deviation of the normalized time series.
The contour interval is 0.25oC.

Fig. 2: The spatial patterns of the (a) 4th, (b) 2nd, and (c) 1st

REOF modes of the seasonal mean SST anomalies from the
110-year regional coupled GCM simulation. The magnitude
of the patterns corresponds to two times of the standard devia-
tion of the normalized time series. The contour interval is
0.25oC.
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tions. For NTA, they seem to be related to the North At-
lantic Oscillation while low-frequency Rossby waves
(Hoskins and Karoly, 1981) propagating from the west
may also play a role. For SSA, there is a significant con-
nection to the Antarctic Oscillation (Gong and Wang,
1999). Since climatological SST is prescribed outside the
Atlantic domain and in the global southern extra-tropi-
cal oceans, some anomalous atmospheric signals from
the global atmospheric internal variability (Straus and
Shukla, 2002) might propagate into the coupled Atlantic
domain. However, the local coupled processes may fur-
ther modify these signals. For instance, after the SST
anomalies are initiated by these forcings, regional air-
sea processes seem to expand these anomalies further
toward the equator on a seasonal time scale.

In a previous study using the regional coupled
model forced with observed SST in 1950-1998 over the
uncoupled domain, Huang et al. (2002) found signifi-
cant ENSO influences on the NTA, which is similar to
the observed ENSO-NTA relationship (Enfield and
Mayer, 1997). The present experiment suggests that the
spatial pattern of NTA is mainly determined by ocean-
atmosphere coupling within the Atlantic Ocean. The
main effect of ENSO may be primarily to modulate the
temporal evolution of the NTA through influencing at-
mospheric planetary waves propagating into the basin.

These results on NTA and SSA are largely consistent with
those derived by Dommenget and Latif (2000) based on
annual mean SST data from several globally coupled
ocean-atmosphere general circulation models (CGCM).
In fact, the two leading REOF modes of our model simu-
lation, the SSA (Fig. 2c) and NTA (Fig. 2b), are very simi-
lar to the two leading modes from the models
Dommenget and Latif (2000) have shown. However, our
interpretation and explanation of the patterns in the
southern ocean are different. In model simulations re-
ported by Dommenget and Latif (2000), a pattern simi-
lar to the observed SSA is found as a leading mode for
all the models. They further noticed that this model mode
is strongly affected by subtropical atmospheric fluctua-
tions. However, Dommenget and Latif (2000) have in-
terpreted that mode to be a simulation of the observed
STA and concluded that STA is mainly caused by forcings
from the subtropics. Therefore, they suggested that the
main patterns in both hemispheres resemble local oce-
anic responses to atmospheric fluctuations from the sub-
tropics, with air-sea feedback and ocean dynamics hav-
ing little effect in the tropics. Our conclusion in this re-
spect is different from Dommenget and Latif (2000).
Based on our results, the contribution of the regional air-
sea coupling and oceanic dynamics may still be signifi-
cant, especially for STA, even though it is underestimated
due to the systematic errors of the present coupled ocean-
atmosphere general circulation models.
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1. Introduction
Subtropical Cells (STCs) are shallow meridional

overturning cells that transport water subducted in the
subtropics during the winter season to the tropics, where
it is upwelled to the surface. The upwelled water is modi-
fied by air-sea heat exchange and then advected back to
the subtropics by poleward Ekman flows in the surface
layer to complete the STC. The STCs in the Pacific have
been extensively studied both observationally and theo-
retically (e.g., McCreary and Lu, 1994; Liu et al., 1994;
and Johnson and McPhaden, 1999), and several recent
studies suggest STCs may play a role in regulating the
low frequency climate variability involving tropical Pa-
cific SST (Gu and Philander, 1997; Kleeman et al., 1999;
McPhaden and Zhang, 2002). Unlike the STCs in the Pa-
cific, fewer studies have been conducted on the STCs in
the Atlantic, though several modelling papers (Fratan-
toni et al., 2000; Inui et al., 2002; Lazar et al.,. 2002;
Malanotte-Rizzoli et al., 2000; Harper, 2000; Jochum and
Malanotte-Rizzoli, 2001) have recently appeared. These
studies suggested strong dependence of the strength and
mean pathways of STCs on model configurations and
climatological forcings. Differences between the model
simulations may also be attributed to differences in how
the large scale Thermohaline Circulation (THC) is simu-
lated in the models. Here we form a high resolution
hydrographic climatology for the Atlantic to describe the
subsurface limb of STCs, which connect the tropical-
extratropical Atlantic in the pycnocline. The primary data
set is a combination of the World Ocean Database
(Conkright et al., 1999) from the National Oceanographic
Data Center (NODC), new hydrographic data collected
during the World Ocean Circulation Experiment
(WOCE), and data collected during cruises to service
Pilot Research Moored Array in the Tropical Atlantic (PI-
RATA) moorings. A total of 86,131 casts with both tem-

perature and salinity measurements in the Atlantic be-
tween 40o S and 50o N reach a depth of at least 1200 m,
which is the reference level we use for our geostrophic
velocity estimates. The number of casts available for de-
fining water mass properties at shallower levels is con-
siderably greater (e.g. 166,941 casts reach at least 300 m).
By decade, the number of available cast ranges between
about 7,000 - 30,000 to 1200 m and 13,000 - 53,000 to 300
m, with maximum sampling taking place in the 1970’s
and 80’s.

2. Flow on Isopycnal Surfaces in the Pycnocline
Flow in the Atlantic STCs is concentrated on

isopycnal surfaces that outcrop and are ventilated in the
subtropics. Temperature, salinity, geostrophic stream-
lines, and potential vorticity (N2f/g, where N is the buoy-
ancy frequency, f is Coriolis parameter, and g is gravita-
tional acceleration) are calculated on these isopycnal
surfaces and averaged from 1950-2000. Calculations are
performed using the Hydrobase analysis package (Curry,
1996), which implements isopycnal averaging to grid in-
dividual profiles along their density surfaces into bins
on a 0.25o latitude x 0.25o longitude grid. The resulting
bin-averaged profiles are then mapped onto 0.5o x 0.5o

grid using objective analysis with zonal and meridional
de-correlation scales set at 5o longitude x 2o latitude. To
illustrate the basic structure of STCs, we show the fields
of planetary potential vorticity (PV) and salinity on the
25.4 !

" isopycnal surface (roughly equivalent to 20o C) in
the upper pycnocline (Fig. 1a, b, page 37). The PV field
is characterized by the high PV ridge extending from
the eastern boundary near 15o N to the western part of
the basin near 10o N, almost reaching the western bound-
ary. This PV ridge underlies the Inter-tropical Conver-
gence Zone (ITCZ) where wind stress curl pumps the
pycnocline up toward the surface and vertically com-
presses density surfaces. Also shown are the wintertime
outcrop lines of this surface in both the Northern and
Southern Hemisphere. Assuming that PV is approxi-
mately conserved along trajectories, water subducted in
the Northern Hemisphere subtropics on this density sur-
face would have to take a convoluted pathway around
the western rim of this PV ridge to get to the equatorial
region (McCreary and Lu, 1994). In contrast, the PV field
in the Southern Hemisphere is more uniform, allowing
for a more direct interior pathway between the subtrop-
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